codelion commited on
Commit
99d67bf
Β·
verified Β·
1 Parent(s): 1321a21

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +19 -43
README.md CHANGED
@@ -12,29 +12,27 @@ license: apache-2.0
12
 
13
  A flexible, adaptive classification system that allows for dynamic addition of new classes and continuous learning from examples. Built on top of transformers from HuggingFace, this library provides an easy-to-use interface for creating and updating text classifiers.
14
 
15
- ## Features
16
 
17
- - πŸš€ Works with any transformer classifier model
18
- - πŸ“ˆ Continuous learning capabilities
19
- - 🎯 Dynamic class addition
20
- - πŸ’Ύ Safe and efficient state persistence
21
- - πŸ”„ Prototype-based learning
22
- - 🧠 Neural adaptation layer
23
-
24
- ## Try Now
25
-
26
- | Use Case | Demonstrates | Link |
27
- |----------|----------|-------|
28
- | Basic Example (Cat or Dog) | Continuous learning | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1Zmvtb3XUFtUImEmYdKpkuqmxKVlRxzt9?usp=sharing) |
29
- | Support Ticket Classification| Realistic examples | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1yeVCi_Cdx2jtM7HI0gbU6VlZDJsg_m8u?usp=sharing) |
30
- | Query Classification | Different configurations | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1b2q303CLDRQAkC65Rtwcoj09ovR0mGwz?usp=sharing) |
31
- | Multilingual Sentiment Analysis | Ensemble of classifiers | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/14tfRi_DtL-QgjBMgVRrsLwcov-zqbKBl?usp=sharing) |
32
- | Product Category Classification | Batch processing | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1VyxVubB8LXXES6qElEYJL241emkV_Wxc?usp=sharing) |
33
-
34
- ## Installation
35
-
36
- ```bash
37
  pip install adaptive-classifier
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38
  ```
39
 
40
  ## How It Works
@@ -46,25 +44,3 @@ The system combines three key components:
46
  2. **Prototype Memory**: Maintains class prototypes for quick adaptation to new examples
47
 
48
  3. **Adaptive Neural Layer**: Learns refined decision boundaries through continuous training
49
-
50
- ## References
51
-
52
- - [RouteLLM: Learning to Route LLMs with Preference Data](https://arxiv.org/abs/2406.18665)
53
- - [Transformer^2: Self-adaptive LLMs](https://arxiv.org/abs/2501.06252)
54
- - [Lamini Classifier Agent Toolkit](https://www.lamini.ai/blog/classifier-agent-toolkit)
55
- - [Protoformer: Embedding Prototypes for Transformers](https://arxiv.org/abs/2206.12710)
56
- - [Overcoming catastrophic forgetting in neural networks](https://arxiv.org/abs/1612.00796)
57
-
58
- ## Citation
59
-
60
- If you use this library in your research, please cite:
61
-
62
- ```bibtex
63
- @software{adaptive_classifier,
64
- title = {Adaptive Classifier: Dynamic Text Classification with Continuous Learning},
65
- author = {Asankhaya Sharma},
66
- year = {2025},
67
- publisher = {GitHub},
68
- url = {https://github.com/codelion/adaptive-classifier}
69
- }
70
- ```
 
12
 
13
  A flexible, adaptive classification system that allows for dynamic addition of new classes and continuous learning from examples. Built on top of transformers from HuggingFace, this library provides an easy-to-use interface for creating and updating text classifiers.
14
 
15
+ ## Usage
16
 
17
+ ```python
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18
  pip install adaptive-classifier
19
+
20
+ from adaptive_classifier import AdaptiveClassifier
21
+ # Load from Hub
22
+ classifier = AdaptiveClassifier.from_pretrained("adaptive-classifier/model-name")
23
+ # Add some examples
24
+ texts = [
25
+ "The product works great!",
26
+ "Terrible experience",
27
+ "Neutral about this purchase"
28
+ ]
29
+ labels = ["positive", "negative", "neutral"]
30
+
31
+ classifier.add_examples(texts, labels)
32
+
33
+ # Make predictions
34
+ predictions = classifier.predict("This is amazing!")
35
+ print(predictions) # [('positive', 0.85), ('neutral', 0.12), ('negative', 0.03)]
36
  ```
37
 
38
  ## How It Works
 
44
  2. **Prototype Memory**: Maintains class prototypes for quick adaptation to new examples
45
 
46
  3. **Adaptive Neural Layer**: Learns refined decision boundaries through continuous training