Spaces:
Running
on
Zero
Running
on
Zero
wangmengchao
commited on
Commit
·
3570591
1
Parent(s):
c27cabb
init
Browse files- diffsynth/models/__init__.py +1 -0
- diffsynth/models/downloader.py +111 -0
- diffsynth/models/model_manager.py +404 -0
- diffsynth/models/utils.py +182 -0
- diffsynth/models/wan_video_dit.py +881 -0
- diffsynth/models/wan_video_image_encoder.py +904 -0
- diffsynth/models/wan_video_text_encoder.py +269 -0
- diffsynth/models/wan_video_vae.py +808 -0
diffsynth/models/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .model_manager import *
|
diffsynth/models/downloader.py
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from huggingface_hub import hf_hub_download
|
2 |
+
from modelscope import snapshot_download
|
3 |
+
import os, shutil
|
4 |
+
from typing_extensions import Literal, TypeAlias
|
5 |
+
from typing import List
|
6 |
+
from ..configs.model_config import preset_models_on_huggingface, preset_models_on_modelscope, Preset_model_id
|
7 |
+
|
8 |
+
|
9 |
+
def download_from_modelscope(model_id, origin_file_path, local_dir):
|
10 |
+
os.makedirs(local_dir, exist_ok=True)
|
11 |
+
file_name = os.path.basename(origin_file_path)
|
12 |
+
if file_name in os.listdir(local_dir):
|
13 |
+
print(f" {file_name} has been already in {local_dir}.")
|
14 |
+
else:
|
15 |
+
print(f" Start downloading {os.path.join(local_dir, file_name)}")
|
16 |
+
snapshot_download(model_id, allow_file_pattern=origin_file_path, local_dir=local_dir)
|
17 |
+
downloaded_file_path = os.path.join(local_dir, origin_file_path)
|
18 |
+
target_file_path = os.path.join(local_dir, os.path.split(origin_file_path)[-1])
|
19 |
+
if downloaded_file_path != target_file_path:
|
20 |
+
shutil.move(downloaded_file_path, target_file_path)
|
21 |
+
shutil.rmtree(os.path.join(local_dir, origin_file_path.split("/")[0]))
|
22 |
+
|
23 |
+
|
24 |
+
def download_from_huggingface(model_id, origin_file_path, local_dir):
|
25 |
+
os.makedirs(local_dir, exist_ok=True)
|
26 |
+
file_name = os.path.basename(origin_file_path)
|
27 |
+
if file_name in os.listdir(local_dir):
|
28 |
+
print(f" {file_name} has been already in {local_dir}.")
|
29 |
+
else:
|
30 |
+
print(f" Start downloading {os.path.join(local_dir, file_name)}")
|
31 |
+
hf_hub_download(model_id, origin_file_path, local_dir=local_dir)
|
32 |
+
downloaded_file_path = os.path.join(local_dir, origin_file_path)
|
33 |
+
target_file_path = os.path.join(local_dir, file_name)
|
34 |
+
if downloaded_file_path != target_file_path:
|
35 |
+
shutil.move(downloaded_file_path, target_file_path)
|
36 |
+
shutil.rmtree(os.path.join(local_dir, origin_file_path.split("/")[0]))
|
37 |
+
|
38 |
+
|
39 |
+
Preset_model_website: TypeAlias = Literal[
|
40 |
+
"HuggingFace",
|
41 |
+
"ModelScope",
|
42 |
+
]
|
43 |
+
website_to_preset_models = {
|
44 |
+
"HuggingFace": preset_models_on_huggingface,
|
45 |
+
"ModelScope": preset_models_on_modelscope,
|
46 |
+
}
|
47 |
+
website_to_download_fn = {
|
48 |
+
"HuggingFace": download_from_huggingface,
|
49 |
+
"ModelScope": download_from_modelscope,
|
50 |
+
}
|
51 |
+
|
52 |
+
|
53 |
+
def download_customized_models(
|
54 |
+
model_id,
|
55 |
+
origin_file_path,
|
56 |
+
local_dir,
|
57 |
+
downloading_priority: List[Preset_model_website] = ["ModelScope", "HuggingFace"],
|
58 |
+
):
|
59 |
+
downloaded_files = []
|
60 |
+
for website in downloading_priority:
|
61 |
+
# Check if the file is downloaded.
|
62 |
+
file_to_download = os.path.join(local_dir, os.path.basename(origin_file_path))
|
63 |
+
if file_to_download in downloaded_files:
|
64 |
+
continue
|
65 |
+
# Download
|
66 |
+
website_to_download_fn[website](model_id, origin_file_path, local_dir)
|
67 |
+
if os.path.basename(origin_file_path) in os.listdir(local_dir):
|
68 |
+
downloaded_files.append(file_to_download)
|
69 |
+
return downloaded_files
|
70 |
+
|
71 |
+
|
72 |
+
def download_models(
|
73 |
+
model_id_list: List[Preset_model_id] = [],
|
74 |
+
downloading_priority: List[Preset_model_website] = ["ModelScope", "HuggingFace"],
|
75 |
+
):
|
76 |
+
print(f"Downloading models: {model_id_list}")
|
77 |
+
downloaded_files = []
|
78 |
+
load_files = []
|
79 |
+
|
80 |
+
for model_id in model_id_list:
|
81 |
+
for website in downloading_priority:
|
82 |
+
if model_id in website_to_preset_models[website]:
|
83 |
+
|
84 |
+
# Parse model metadata
|
85 |
+
model_metadata = website_to_preset_models[website][model_id]
|
86 |
+
if isinstance(model_metadata, list):
|
87 |
+
file_data = model_metadata
|
88 |
+
else:
|
89 |
+
file_data = model_metadata.get("file_list", [])
|
90 |
+
|
91 |
+
# Try downloading the model from this website.
|
92 |
+
model_files = []
|
93 |
+
for model_id, origin_file_path, local_dir in file_data:
|
94 |
+
# Check if the file is downloaded.
|
95 |
+
file_to_download = os.path.join(local_dir, os.path.basename(origin_file_path))
|
96 |
+
if file_to_download in downloaded_files:
|
97 |
+
continue
|
98 |
+
# Download
|
99 |
+
website_to_download_fn[website](model_id, origin_file_path, local_dir)
|
100 |
+
if os.path.basename(origin_file_path) in os.listdir(local_dir):
|
101 |
+
downloaded_files.append(file_to_download)
|
102 |
+
model_files.append(file_to_download)
|
103 |
+
|
104 |
+
# If the model is successfully downloaded, break.
|
105 |
+
if len(model_files) > 0:
|
106 |
+
if isinstance(model_metadata, dict) and "load_path" in model_metadata:
|
107 |
+
model_files = model_metadata["load_path"]
|
108 |
+
load_files.extend(model_files)
|
109 |
+
break
|
110 |
+
|
111 |
+
return load_files
|
diffsynth/models/model_manager.py
ADDED
@@ -0,0 +1,404 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os, torch, json, importlib
|
2 |
+
from typing import List
|
3 |
+
|
4 |
+
from .downloader import download_models, download_customized_models, Preset_model_id, Preset_model_website
|
5 |
+
|
6 |
+
from ..configs.model_config import model_loader_configs, huggingface_model_loader_configs, patch_model_loader_configs
|
7 |
+
from .utils import load_state_dict, init_weights_on_device, hash_state_dict_keys, split_state_dict_with_prefix
|
8 |
+
|
9 |
+
|
10 |
+
def load_model_from_single_file(state_dict, model_names, model_classes, model_resource, torch_dtype, device):
|
11 |
+
loaded_model_names, loaded_models = [], []
|
12 |
+
for model_name, model_class in zip(model_names, model_classes):
|
13 |
+
print(f" model_name: {model_name} model_class: {model_class.__name__}")
|
14 |
+
state_dict_converter = model_class.state_dict_converter()
|
15 |
+
if model_resource == "civitai":
|
16 |
+
state_dict_results = state_dict_converter.from_civitai(state_dict)
|
17 |
+
elif model_resource == "diffusers":
|
18 |
+
state_dict_results = state_dict_converter.from_diffusers(state_dict)
|
19 |
+
if isinstance(state_dict_results, tuple):
|
20 |
+
model_state_dict, extra_kwargs = state_dict_results
|
21 |
+
print(f" This model is initialized with extra kwargs: {extra_kwargs}")
|
22 |
+
else:
|
23 |
+
model_state_dict, extra_kwargs = state_dict_results, {}
|
24 |
+
torch_dtype = torch.float32 if extra_kwargs.get("upcast_to_float32", False) else torch_dtype
|
25 |
+
with init_weights_on_device():
|
26 |
+
model = model_class(**extra_kwargs)
|
27 |
+
if hasattr(model, "eval"):
|
28 |
+
model = model.eval()
|
29 |
+
model.load_state_dict(model_state_dict, assign=True)
|
30 |
+
model = model.to(dtype=torch_dtype, device=device)
|
31 |
+
loaded_model_names.append(model_name)
|
32 |
+
loaded_models.append(model)
|
33 |
+
return loaded_model_names, loaded_models
|
34 |
+
|
35 |
+
|
36 |
+
def load_model_from_huggingface_folder(file_path, model_names, model_classes, torch_dtype, device):
|
37 |
+
loaded_model_names, loaded_models = [], []
|
38 |
+
for model_name, model_class in zip(model_names, model_classes):
|
39 |
+
if torch_dtype in [torch.float32, torch.float16, torch.bfloat16]:
|
40 |
+
model = model_class.from_pretrained(file_path, torch_dtype=torch_dtype).eval()
|
41 |
+
else:
|
42 |
+
model = model_class.from_pretrained(file_path).eval().to(dtype=torch_dtype)
|
43 |
+
if torch_dtype == torch.float16 and hasattr(model, "half"):
|
44 |
+
model = model.half()
|
45 |
+
try:
|
46 |
+
model = model.to(device=device)
|
47 |
+
except:
|
48 |
+
pass
|
49 |
+
loaded_model_names.append(model_name)
|
50 |
+
loaded_models.append(model)
|
51 |
+
return loaded_model_names, loaded_models
|
52 |
+
|
53 |
+
|
54 |
+
def load_single_patch_model_from_single_file(state_dict, model_name, model_class, base_model, extra_kwargs, torch_dtype, device):
|
55 |
+
print(f" model_name: {model_name} model_class: {model_class.__name__} extra_kwargs: {extra_kwargs}")
|
56 |
+
base_state_dict = base_model.state_dict()
|
57 |
+
base_model.to("cpu")
|
58 |
+
del base_model
|
59 |
+
model = model_class(**extra_kwargs)
|
60 |
+
model.load_state_dict(base_state_dict, strict=False)
|
61 |
+
model.load_state_dict(state_dict, strict=False)
|
62 |
+
model.to(dtype=torch_dtype, device=device)
|
63 |
+
return model
|
64 |
+
|
65 |
+
|
66 |
+
def load_patch_model_from_single_file(state_dict, model_names, model_classes, extra_kwargs, model_manager, torch_dtype, device):
|
67 |
+
loaded_model_names, loaded_models = [], []
|
68 |
+
for model_name, model_class in zip(model_names, model_classes):
|
69 |
+
while True:
|
70 |
+
for model_id in range(len(model_manager.model)):
|
71 |
+
base_model_name = model_manager.model_name[model_id]
|
72 |
+
if base_model_name == model_name:
|
73 |
+
base_model_path = model_manager.model_path[model_id]
|
74 |
+
base_model = model_manager.model[model_id]
|
75 |
+
print(f" Adding patch model to {base_model_name} ({base_model_path})")
|
76 |
+
patched_model = load_single_patch_model_from_single_file(
|
77 |
+
state_dict, model_name, model_class, base_model, extra_kwargs, torch_dtype, device)
|
78 |
+
loaded_model_names.append(base_model_name)
|
79 |
+
loaded_models.append(patched_model)
|
80 |
+
model_manager.model.pop(model_id)
|
81 |
+
model_manager.model_path.pop(model_id)
|
82 |
+
model_manager.model_name.pop(model_id)
|
83 |
+
break
|
84 |
+
else:
|
85 |
+
break
|
86 |
+
return loaded_model_names, loaded_models
|
87 |
+
|
88 |
+
|
89 |
+
|
90 |
+
class ModelDetectorTemplate:
|
91 |
+
def __init__(self):
|
92 |
+
pass
|
93 |
+
|
94 |
+
def match(self, file_path="", state_dict={}):
|
95 |
+
return False
|
96 |
+
|
97 |
+
def load(self, file_path="", state_dict={}, device="cuda", torch_dtype=torch.float16, **kwargs):
|
98 |
+
return [], []
|
99 |
+
|
100 |
+
|
101 |
+
|
102 |
+
class ModelDetectorFromSingleFile:
|
103 |
+
def __init__(self, model_loader_configs=[]):
|
104 |
+
self.keys_hash_with_shape_dict = {}
|
105 |
+
self.keys_hash_dict = {}
|
106 |
+
for metadata in model_loader_configs:
|
107 |
+
self.add_model_metadata(*metadata)
|
108 |
+
|
109 |
+
|
110 |
+
def add_model_metadata(self, keys_hash, keys_hash_with_shape, model_names, model_classes, model_resource):
|
111 |
+
self.keys_hash_with_shape_dict[keys_hash_with_shape] = (model_names, model_classes, model_resource)
|
112 |
+
if keys_hash is not None:
|
113 |
+
self.keys_hash_dict[keys_hash] = (model_names, model_classes, model_resource)
|
114 |
+
|
115 |
+
|
116 |
+
def match(self, file_path="", state_dict={}):
|
117 |
+
if isinstance(file_path, str) and os.path.isdir(file_path):
|
118 |
+
return False
|
119 |
+
if len(state_dict) == 0:
|
120 |
+
state_dict = load_state_dict(file_path)
|
121 |
+
keys_hash_with_shape = hash_state_dict_keys(state_dict, with_shape=True)
|
122 |
+
if keys_hash_with_shape in self.keys_hash_with_shape_dict:
|
123 |
+
return True
|
124 |
+
keys_hash = hash_state_dict_keys(state_dict, with_shape=False)
|
125 |
+
if keys_hash in self.keys_hash_dict:
|
126 |
+
return True
|
127 |
+
return False
|
128 |
+
|
129 |
+
|
130 |
+
def load(self, file_path="", state_dict={}, device="cuda", torch_dtype=torch.float16, **kwargs):
|
131 |
+
if len(state_dict) == 0:
|
132 |
+
state_dict = load_state_dict(file_path)
|
133 |
+
|
134 |
+
# Load models with strict matching
|
135 |
+
keys_hash_with_shape = hash_state_dict_keys(state_dict, with_shape=True)
|
136 |
+
if keys_hash_with_shape in self.keys_hash_with_shape_dict:
|
137 |
+
model_names, model_classes, model_resource = self.keys_hash_with_shape_dict[keys_hash_with_shape]
|
138 |
+
loaded_model_names, loaded_models = load_model_from_single_file(state_dict, model_names, model_classes, model_resource, torch_dtype, device)
|
139 |
+
return loaded_model_names, loaded_models
|
140 |
+
|
141 |
+
# Load models without strict matching
|
142 |
+
# (the shape of parameters may be inconsistent, and the state_dict_converter will modify the model architecture)
|
143 |
+
keys_hash = hash_state_dict_keys(state_dict, with_shape=False)
|
144 |
+
if keys_hash in self.keys_hash_dict:
|
145 |
+
model_names, model_classes, model_resource = self.keys_hash_dict[keys_hash]
|
146 |
+
loaded_model_names, loaded_models = load_model_from_single_file(state_dict, model_names, model_classes, model_resource, torch_dtype, device)
|
147 |
+
return loaded_model_names, loaded_models
|
148 |
+
|
149 |
+
return loaded_model_names, loaded_models
|
150 |
+
|
151 |
+
|
152 |
+
|
153 |
+
class ModelDetectorFromSplitedSingleFile(ModelDetectorFromSingleFile):
|
154 |
+
def __init__(self, model_loader_configs=[]):
|
155 |
+
super().__init__(model_loader_configs)
|
156 |
+
|
157 |
+
|
158 |
+
def match(self, file_path="", state_dict={}):
|
159 |
+
if isinstance(file_path, str) and os.path.isdir(file_path):
|
160 |
+
return False
|
161 |
+
if len(state_dict) == 0:
|
162 |
+
state_dict = load_state_dict(file_path)
|
163 |
+
splited_state_dict = split_state_dict_with_prefix(state_dict)
|
164 |
+
for sub_state_dict in splited_state_dict:
|
165 |
+
if super().match(file_path, sub_state_dict):
|
166 |
+
return True
|
167 |
+
return False
|
168 |
+
|
169 |
+
|
170 |
+
def load(self, file_path="", state_dict={}, device="cuda", torch_dtype=torch.float16, **kwargs):
|
171 |
+
# Split the state_dict and load from each component
|
172 |
+
splited_state_dict = split_state_dict_with_prefix(state_dict)
|
173 |
+
valid_state_dict = {}
|
174 |
+
for sub_state_dict in splited_state_dict:
|
175 |
+
if super().match(file_path, sub_state_dict):
|
176 |
+
valid_state_dict.update(sub_state_dict)
|
177 |
+
if super().match(file_path, valid_state_dict):
|
178 |
+
loaded_model_names, loaded_models = super().load(file_path, valid_state_dict, device, torch_dtype)
|
179 |
+
else:
|
180 |
+
loaded_model_names, loaded_models = [], []
|
181 |
+
for sub_state_dict in splited_state_dict:
|
182 |
+
if super().match(file_path, sub_state_dict):
|
183 |
+
loaded_model_names_, loaded_models_ = super().load(file_path, valid_state_dict, device, torch_dtype)
|
184 |
+
loaded_model_names += loaded_model_names_
|
185 |
+
loaded_models += loaded_models_
|
186 |
+
return loaded_model_names, loaded_models
|
187 |
+
|
188 |
+
|
189 |
+
|
190 |
+
class ModelDetectorFromHuggingfaceFolder:
|
191 |
+
def __init__(self, model_loader_configs=[]):
|
192 |
+
self.architecture_dict = {}
|
193 |
+
for metadata in model_loader_configs:
|
194 |
+
self.add_model_metadata(*metadata)
|
195 |
+
|
196 |
+
|
197 |
+
def add_model_metadata(self, architecture, huggingface_lib, model_name, redirected_architecture):
|
198 |
+
self.architecture_dict[architecture] = (huggingface_lib, model_name, redirected_architecture)
|
199 |
+
|
200 |
+
|
201 |
+
def match(self, file_path="", state_dict={}):
|
202 |
+
if not isinstance(file_path, str) or os.path.isfile(file_path):
|
203 |
+
return False
|
204 |
+
file_list = os.listdir(file_path)
|
205 |
+
if "config.json" not in file_list:
|
206 |
+
return False
|
207 |
+
with open(os.path.join(file_path, "config.json"), "r") as f:
|
208 |
+
config = json.load(f)
|
209 |
+
if "architectures" not in config and "_class_name" not in config:
|
210 |
+
return False
|
211 |
+
return True
|
212 |
+
|
213 |
+
|
214 |
+
def load(self, file_path="", state_dict={}, device="cuda", torch_dtype=torch.float16, **kwargs):
|
215 |
+
with open(os.path.join(file_path, "config.json"), "r") as f:
|
216 |
+
config = json.load(f)
|
217 |
+
loaded_model_names, loaded_models = [], []
|
218 |
+
architectures = config["architectures"] if "architectures" in config else [config["_class_name"]]
|
219 |
+
for architecture in architectures:
|
220 |
+
huggingface_lib, model_name, redirected_architecture = self.architecture_dict[architecture]
|
221 |
+
if redirected_architecture is not None:
|
222 |
+
architecture = redirected_architecture
|
223 |
+
model_class = importlib.import_module(huggingface_lib).__getattribute__(architecture)
|
224 |
+
loaded_model_names_, loaded_models_ = load_model_from_huggingface_folder(file_path, [model_name], [model_class], torch_dtype, device)
|
225 |
+
loaded_model_names += loaded_model_names_
|
226 |
+
loaded_models += loaded_models_
|
227 |
+
return loaded_model_names, loaded_models
|
228 |
+
|
229 |
+
|
230 |
+
|
231 |
+
class ModelDetectorFromPatchedSingleFile:
|
232 |
+
def __init__(self, model_loader_configs=[]):
|
233 |
+
self.keys_hash_with_shape_dict = {}
|
234 |
+
for metadata in model_loader_configs:
|
235 |
+
self.add_model_metadata(*metadata)
|
236 |
+
|
237 |
+
|
238 |
+
def add_model_metadata(self, keys_hash_with_shape, model_name, model_class, extra_kwargs):
|
239 |
+
self.keys_hash_with_shape_dict[keys_hash_with_shape] = (model_name, model_class, extra_kwargs)
|
240 |
+
|
241 |
+
|
242 |
+
def match(self, file_path="", state_dict={}):
|
243 |
+
if not isinstance(file_path, str) or os.path.isdir(file_path):
|
244 |
+
return False
|
245 |
+
if len(state_dict) == 0:
|
246 |
+
state_dict = load_state_dict(file_path)
|
247 |
+
keys_hash_with_shape = hash_state_dict_keys(state_dict, with_shape=True)
|
248 |
+
if keys_hash_with_shape in self.keys_hash_with_shape_dict:
|
249 |
+
return True
|
250 |
+
return False
|
251 |
+
|
252 |
+
|
253 |
+
def load(self, file_path="", state_dict={}, device="cuda", torch_dtype=torch.float16, model_manager=None, **kwargs):
|
254 |
+
if len(state_dict) == 0:
|
255 |
+
state_dict = load_state_dict(file_path)
|
256 |
+
|
257 |
+
# Load models with strict matching
|
258 |
+
loaded_model_names, loaded_models = [], []
|
259 |
+
keys_hash_with_shape = hash_state_dict_keys(state_dict, with_shape=True)
|
260 |
+
if keys_hash_with_shape in self.keys_hash_with_shape_dict:
|
261 |
+
model_names, model_classes, extra_kwargs = self.keys_hash_with_shape_dict[keys_hash_with_shape]
|
262 |
+
loaded_model_names_, loaded_models_ = load_patch_model_from_single_file(
|
263 |
+
state_dict, model_names, model_classes, extra_kwargs, model_manager, torch_dtype, device)
|
264 |
+
loaded_model_names += loaded_model_names_
|
265 |
+
loaded_models += loaded_models_
|
266 |
+
return loaded_model_names, loaded_models
|
267 |
+
|
268 |
+
|
269 |
+
|
270 |
+
class ModelManager:
|
271 |
+
def __init__(
|
272 |
+
self,
|
273 |
+
torch_dtype=torch.float16,
|
274 |
+
device="cuda",
|
275 |
+
model_id_list: List[Preset_model_id] = [],
|
276 |
+
downloading_priority: List[Preset_model_website] = ["ModelScope", "HuggingFace"],
|
277 |
+
file_path_list: List[str] = [],
|
278 |
+
):
|
279 |
+
self.torch_dtype = torch_dtype
|
280 |
+
self.device = device
|
281 |
+
self.model = []
|
282 |
+
self.model_path = []
|
283 |
+
self.model_name = []
|
284 |
+
downloaded_files = download_models(model_id_list, downloading_priority) if len(model_id_list) > 0 else []
|
285 |
+
self.model_detector = [
|
286 |
+
ModelDetectorFromSingleFile(model_loader_configs),
|
287 |
+
ModelDetectorFromSplitedSingleFile(model_loader_configs),
|
288 |
+
ModelDetectorFromHuggingfaceFolder(huggingface_model_loader_configs),
|
289 |
+
ModelDetectorFromPatchedSingleFile(patch_model_loader_configs),
|
290 |
+
]
|
291 |
+
self.load_models(downloaded_files + file_path_list)
|
292 |
+
|
293 |
+
|
294 |
+
def load_model_from_single_file(self, file_path="", state_dict={}, model_names=[], model_classes=[], model_resource=None):
|
295 |
+
print(f"Loading models from file: {file_path}")
|
296 |
+
if len(state_dict) == 0:
|
297 |
+
state_dict = load_state_dict(file_path)
|
298 |
+
model_names, models = load_model_from_single_file(state_dict, model_names, model_classes, model_resource, self.torch_dtype, self.device)
|
299 |
+
for model_name, model in zip(model_names, models):
|
300 |
+
self.model.append(model)
|
301 |
+
self.model_path.append(file_path)
|
302 |
+
self.model_name.append(model_name)
|
303 |
+
print(f" The following models are loaded: {model_names}.")
|
304 |
+
|
305 |
+
|
306 |
+
def load_model_from_huggingface_folder(self, file_path="", model_names=[], model_classes=[]):
|
307 |
+
print(f"Loading models from folder: {file_path}")
|
308 |
+
model_names, models = load_model_from_huggingface_folder(file_path, model_names, model_classes, self.torch_dtype, self.device)
|
309 |
+
for model_name, model in zip(model_names, models):
|
310 |
+
self.model.append(model)
|
311 |
+
self.model_path.append(file_path)
|
312 |
+
self.model_name.append(model_name)
|
313 |
+
print(f" The following models are loaded: {model_names}.")
|
314 |
+
|
315 |
+
|
316 |
+
def load_patch_model_from_single_file(self, file_path="", state_dict={}, model_names=[], model_classes=[], extra_kwargs={}):
|
317 |
+
print(f"Loading patch models from file: {file_path}")
|
318 |
+
model_names, models = load_patch_model_from_single_file(
|
319 |
+
state_dict, model_names, model_classes, extra_kwargs, self, self.torch_dtype, self.device)
|
320 |
+
for model_name, model in zip(model_names, models):
|
321 |
+
self.model.append(model)
|
322 |
+
self.model_path.append(file_path)
|
323 |
+
self.model_name.append(model_name)
|
324 |
+
print(f" The following patched models are loaded: {model_names}.")
|
325 |
+
|
326 |
+
|
327 |
+
def load_lora(self, file_path="", state_dict={}, lora_alpha=1.0):
|
328 |
+
if isinstance(file_path, list):
|
329 |
+
for file_path_ in file_path:
|
330 |
+
self.load_lora(file_path_, state_dict=state_dict, lora_alpha=lora_alpha)
|
331 |
+
else:
|
332 |
+
print(f"Loading LoRA models from file: {file_path}")
|
333 |
+
if len(state_dict) == 0:
|
334 |
+
state_dict = load_state_dict(file_path)
|
335 |
+
for model_name, model, model_path in zip(self.model_name, self.model, self.model_path):
|
336 |
+
for lora in get_lora_loaders():
|
337 |
+
match_results = lora.match(model, state_dict)
|
338 |
+
if match_results is not None:
|
339 |
+
print(f" Adding LoRA to {model_name} ({model_path}).")
|
340 |
+
lora_prefix, model_resource = match_results
|
341 |
+
lora.load(model, state_dict, lora_prefix, alpha=lora_alpha, model_resource=model_resource)
|
342 |
+
break
|
343 |
+
|
344 |
+
|
345 |
+
def load_model(self, file_path, model_names=None, device=None, torch_dtype=None):
|
346 |
+
print(f"Loading models from: {file_path}")
|
347 |
+
if device is None: device = self.device
|
348 |
+
if torch_dtype is None: torch_dtype = self.torch_dtype
|
349 |
+
if isinstance(file_path, list):
|
350 |
+
state_dict = {}
|
351 |
+
for path in file_path:
|
352 |
+
state_dict.update(load_state_dict(path))
|
353 |
+
elif os.path.isfile(file_path):
|
354 |
+
state_dict = load_state_dict(file_path)
|
355 |
+
else:
|
356 |
+
state_dict = None
|
357 |
+
for model_detector in self.model_detector:
|
358 |
+
if model_detector.match(file_path, state_dict):
|
359 |
+
model_names, models = model_detector.load(
|
360 |
+
file_path, state_dict,
|
361 |
+
device=device, torch_dtype=torch_dtype,
|
362 |
+
allowed_model_names=model_names, model_manager=self
|
363 |
+
)
|
364 |
+
for model_name, model in zip(model_names, models):
|
365 |
+
self.model.append(model)
|
366 |
+
self.model_path.append(file_path)
|
367 |
+
self.model_name.append(model_name)
|
368 |
+
print(f" The following models are loaded: {model_names}.")
|
369 |
+
break
|
370 |
+
else:
|
371 |
+
print(f" We cannot detect the model type. No models are loaded.")
|
372 |
+
|
373 |
+
|
374 |
+
def load_models(self, file_path_list, model_names=None, device=None, torch_dtype=None):
|
375 |
+
for file_path in file_path_list:
|
376 |
+
self.load_model(file_path, model_names, device=device, torch_dtype=torch_dtype)
|
377 |
+
|
378 |
+
|
379 |
+
def fetch_model(self, model_name, file_path=None, require_model_path=False):
|
380 |
+
fetched_models = []
|
381 |
+
fetched_model_paths = []
|
382 |
+
for model, model_path, model_name_ in zip(self.model, self.model_path, self.model_name):
|
383 |
+
if file_path is not None and file_path != model_path:
|
384 |
+
continue
|
385 |
+
if model_name == model_name_:
|
386 |
+
fetched_models.append(model)
|
387 |
+
fetched_model_paths.append(model_path)
|
388 |
+
if len(fetched_models) == 0:
|
389 |
+
print(f"No {model_name} models available.")
|
390 |
+
return None
|
391 |
+
if len(fetched_models) == 1:
|
392 |
+
print(f"Using {model_name} from {fetched_model_paths[0]}.")
|
393 |
+
else:
|
394 |
+
print(f"More than one {model_name} models are loaded in model manager: {fetched_model_paths}. Using {model_name} from {fetched_model_paths[0]}.")
|
395 |
+
if require_model_path:
|
396 |
+
return fetched_models[0], fetched_model_paths[0]
|
397 |
+
else:
|
398 |
+
return fetched_models[0]
|
399 |
+
|
400 |
+
|
401 |
+
def to(self, device):
|
402 |
+
for model in self.model:
|
403 |
+
model.to(device)
|
404 |
+
|
diffsynth/models/utils.py
ADDED
@@ -0,0 +1,182 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch, os
|
2 |
+
from safetensors import safe_open
|
3 |
+
from contextlib import contextmanager
|
4 |
+
import hashlib
|
5 |
+
|
6 |
+
@contextmanager
|
7 |
+
def init_weights_on_device(device = torch.device("meta"), include_buffers :bool = False):
|
8 |
+
|
9 |
+
old_register_parameter = torch.nn.Module.register_parameter
|
10 |
+
if include_buffers:
|
11 |
+
old_register_buffer = torch.nn.Module.register_buffer
|
12 |
+
|
13 |
+
def register_empty_parameter(module, name, param):
|
14 |
+
old_register_parameter(module, name, param)
|
15 |
+
if param is not None:
|
16 |
+
param_cls = type(module._parameters[name])
|
17 |
+
kwargs = module._parameters[name].__dict__
|
18 |
+
kwargs["requires_grad"] = param.requires_grad
|
19 |
+
module._parameters[name] = param_cls(module._parameters[name].to(device), **kwargs)
|
20 |
+
|
21 |
+
def register_empty_buffer(module, name, buffer, persistent=True):
|
22 |
+
old_register_buffer(module, name, buffer, persistent=persistent)
|
23 |
+
if buffer is not None:
|
24 |
+
module._buffers[name] = module._buffers[name].to(device)
|
25 |
+
|
26 |
+
def patch_tensor_constructor(fn):
|
27 |
+
def wrapper(*args, **kwargs):
|
28 |
+
kwargs["device"] = device
|
29 |
+
return fn(*args, **kwargs)
|
30 |
+
|
31 |
+
return wrapper
|
32 |
+
|
33 |
+
if include_buffers:
|
34 |
+
tensor_constructors_to_patch = {
|
35 |
+
torch_function_name: getattr(torch, torch_function_name)
|
36 |
+
for torch_function_name in ["empty", "zeros", "ones", "full"]
|
37 |
+
}
|
38 |
+
else:
|
39 |
+
tensor_constructors_to_patch = {}
|
40 |
+
|
41 |
+
try:
|
42 |
+
torch.nn.Module.register_parameter = register_empty_parameter
|
43 |
+
if include_buffers:
|
44 |
+
torch.nn.Module.register_buffer = register_empty_buffer
|
45 |
+
for torch_function_name in tensor_constructors_to_patch.keys():
|
46 |
+
setattr(torch, torch_function_name, patch_tensor_constructor(getattr(torch, torch_function_name)))
|
47 |
+
yield
|
48 |
+
finally:
|
49 |
+
torch.nn.Module.register_parameter = old_register_parameter
|
50 |
+
if include_buffers:
|
51 |
+
torch.nn.Module.register_buffer = old_register_buffer
|
52 |
+
for torch_function_name, old_torch_function in tensor_constructors_to_patch.items():
|
53 |
+
setattr(torch, torch_function_name, old_torch_function)
|
54 |
+
|
55 |
+
def load_state_dict_from_folder(file_path, torch_dtype=None):
|
56 |
+
state_dict = {}
|
57 |
+
for file_name in os.listdir(file_path):
|
58 |
+
if "." in file_name and file_name.split(".")[-1] in [
|
59 |
+
"safetensors", "bin", "ckpt", "pth", "pt"
|
60 |
+
]:
|
61 |
+
state_dict.update(load_state_dict(os.path.join(file_path, file_name), torch_dtype=torch_dtype))
|
62 |
+
return state_dict
|
63 |
+
|
64 |
+
|
65 |
+
def load_state_dict(file_path, torch_dtype=None):
|
66 |
+
if file_path.endswith(".safetensors"):
|
67 |
+
return load_state_dict_from_safetensors(file_path, torch_dtype=torch_dtype)
|
68 |
+
else:
|
69 |
+
return load_state_dict_from_bin(file_path, torch_dtype=torch_dtype)
|
70 |
+
|
71 |
+
|
72 |
+
def load_state_dict_from_safetensors(file_path, torch_dtype=None):
|
73 |
+
state_dict = {}
|
74 |
+
with safe_open(file_path, framework="pt", device="cpu") as f:
|
75 |
+
for k in f.keys():
|
76 |
+
state_dict[k] = f.get_tensor(k)
|
77 |
+
if torch_dtype is not None:
|
78 |
+
state_dict[k] = state_dict[k].to(torch_dtype)
|
79 |
+
return state_dict
|
80 |
+
|
81 |
+
|
82 |
+
def load_state_dict_from_bin(file_path, torch_dtype=None):
|
83 |
+
state_dict = torch.load(file_path, map_location="cpu", weights_only=True)
|
84 |
+
if torch_dtype is not None:
|
85 |
+
for i in state_dict:
|
86 |
+
if isinstance(state_dict[i], torch.Tensor):
|
87 |
+
state_dict[i] = state_dict[i].to(torch_dtype)
|
88 |
+
return state_dict
|
89 |
+
|
90 |
+
|
91 |
+
def search_for_embeddings(state_dict):
|
92 |
+
embeddings = []
|
93 |
+
for k in state_dict:
|
94 |
+
if isinstance(state_dict[k], torch.Tensor):
|
95 |
+
embeddings.append(state_dict[k])
|
96 |
+
elif isinstance(state_dict[k], dict):
|
97 |
+
embeddings += search_for_embeddings(state_dict[k])
|
98 |
+
return embeddings
|
99 |
+
|
100 |
+
|
101 |
+
def search_parameter(param, state_dict):
|
102 |
+
for name, param_ in state_dict.items():
|
103 |
+
if param.numel() == param_.numel():
|
104 |
+
if param.shape == param_.shape:
|
105 |
+
if torch.dist(param, param_) < 1e-3:
|
106 |
+
return name
|
107 |
+
else:
|
108 |
+
if torch.dist(param.flatten(), param_.flatten()) < 1e-3:
|
109 |
+
return name
|
110 |
+
return None
|
111 |
+
|
112 |
+
|
113 |
+
def build_rename_dict(source_state_dict, target_state_dict, split_qkv=False):
|
114 |
+
matched_keys = set()
|
115 |
+
with torch.no_grad():
|
116 |
+
for name in source_state_dict:
|
117 |
+
rename = search_parameter(source_state_dict[name], target_state_dict)
|
118 |
+
if rename is not None:
|
119 |
+
print(f'"{name}": "{rename}",')
|
120 |
+
matched_keys.add(rename)
|
121 |
+
elif split_qkv and len(source_state_dict[name].shape)>=1 and source_state_dict[name].shape[0]%3==0:
|
122 |
+
length = source_state_dict[name].shape[0] // 3
|
123 |
+
rename = []
|
124 |
+
for i in range(3):
|
125 |
+
rename.append(search_parameter(source_state_dict[name][i*length: i*length+length], target_state_dict))
|
126 |
+
if None not in rename:
|
127 |
+
print(f'"{name}": {rename},')
|
128 |
+
for rename_ in rename:
|
129 |
+
matched_keys.add(rename_)
|
130 |
+
for name in target_state_dict:
|
131 |
+
if name not in matched_keys:
|
132 |
+
print("Cannot find", name, target_state_dict[name].shape)
|
133 |
+
|
134 |
+
|
135 |
+
def search_for_files(folder, extensions):
|
136 |
+
files = []
|
137 |
+
if os.path.isdir(folder):
|
138 |
+
for file in sorted(os.listdir(folder)):
|
139 |
+
files += search_for_files(os.path.join(folder, file), extensions)
|
140 |
+
elif os.path.isfile(folder):
|
141 |
+
for extension in extensions:
|
142 |
+
if folder.endswith(extension):
|
143 |
+
files.append(folder)
|
144 |
+
break
|
145 |
+
return files
|
146 |
+
|
147 |
+
|
148 |
+
def convert_state_dict_keys_to_single_str(state_dict, with_shape=True):
|
149 |
+
keys = []
|
150 |
+
for key, value in state_dict.items():
|
151 |
+
if isinstance(key, str):
|
152 |
+
if isinstance(value, torch.Tensor):
|
153 |
+
if with_shape:
|
154 |
+
shape = "_".join(map(str, list(value.shape)))
|
155 |
+
keys.append(key + ":" + shape)
|
156 |
+
keys.append(key)
|
157 |
+
elif isinstance(value, dict):
|
158 |
+
keys.append(key + "|" + convert_state_dict_keys_to_single_str(value, with_shape=with_shape))
|
159 |
+
keys.sort()
|
160 |
+
keys_str = ",".join(keys)
|
161 |
+
return keys_str
|
162 |
+
|
163 |
+
|
164 |
+
def split_state_dict_with_prefix(state_dict):
|
165 |
+
keys = sorted([key for key in state_dict if isinstance(key, str)])
|
166 |
+
prefix_dict = {}
|
167 |
+
for key in keys:
|
168 |
+
prefix = key if "." not in key else key.split(".")[0]
|
169 |
+
if prefix not in prefix_dict:
|
170 |
+
prefix_dict[prefix] = []
|
171 |
+
prefix_dict[prefix].append(key)
|
172 |
+
state_dicts = []
|
173 |
+
for prefix, keys in prefix_dict.items():
|
174 |
+
sub_state_dict = {key: state_dict[key] for key in keys}
|
175 |
+
state_dicts.append(sub_state_dict)
|
176 |
+
return state_dicts
|
177 |
+
|
178 |
+
|
179 |
+
def hash_state_dict_keys(state_dict, with_shape=True):
|
180 |
+
keys_str = convert_state_dict_keys_to_single_str(state_dict, with_shape=with_shape)
|
181 |
+
keys_str = keys_str.encode(encoding="UTF-8")
|
182 |
+
return hashlib.md5(keys_str).hexdigest()
|
diffsynth/models/wan_video_dit.py
ADDED
@@ -0,0 +1,881 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.amp as amp
|
5 |
+
import torch.nn as nn
|
6 |
+
from tqdm import tqdm
|
7 |
+
from .utils import hash_state_dict_keys
|
8 |
+
|
9 |
+
try:
|
10 |
+
import flash_attn_interface
|
11 |
+
FLASH_ATTN_3_AVAILABLE = True
|
12 |
+
except ModuleNotFoundError:
|
13 |
+
FLASH_ATTN_3_AVAILABLE = False
|
14 |
+
|
15 |
+
try:
|
16 |
+
import flash_attn
|
17 |
+
FLASH_ATTN_2_AVAILABLE = True
|
18 |
+
except ModuleNotFoundError:
|
19 |
+
FLASH_ATTN_2_AVAILABLE = False
|
20 |
+
|
21 |
+
try:
|
22 |
+
from sageattention import sageattn
|
23 |
+
SAGE_ATTN_AVAILABLE = True
|
24 |
+
except ModuleNotFoundError:
|
25 |
+
SAGE_ATTN_AVAILABLE = False
|
26 |
+
|
27 |
+
import warnings
|
28 |
+
|
29 |
+
|
30 |
+
__all__ = ['WanModel']
|
31 |
+
|
32 |
+
|
33 |
+
def flash_attention(
|
34 |
+
q,
|
35 |
+
k,
|
36 |
+
v,
|
37 |
+
q_lens=None,
|
38 |
+
k_lens=None,
|
39 |
+
dropout_p=0.,
|
40 |
+
softmax_scale=None,
|
41 |
+
q_scale=None,
|
42 |
+
causal=False,
|
43 |
+
window_size=(-1, -1),
|
44 |
+
deterministic=False,
|
45 |
+
dtype=torch.bfloat16,
|
46 |
+
version=None,
|
47 |
+
):
|
48 |
+
"""
|
49 |
+
q: [B, Lq, Nq, C1].
|
50 |
+
k: [B, Lk, Nk, C1].
|
51 |
+
v: [B, Lk, Nk, C2]. Nq must be divisible by Nk.
|
52 |
+
q_lens: [B].
|
53 |
+
k_lens: [B].
|
54 |
+
dropout_p: float. Dropout probability.
|
55 |
+
softmax_scale: float. The scaling of QK^T before applying softmax.
|
56 |
+
causal: bool. Whether to apply causal attention mask.
|
57 |
+
window_size: (left right). If not (-1, -1), apply sliding window local attention.
|
58 |
+
deterministic: bool. If True, slightly slower and uses more memory.
|
59 |
+
dtype: torch.dtype. Apply when dtype of q/k/v is not float16/bfloat16.
|
60 |
+
"""
|
61 |
+
half_dtypes = (torch.float16, torch.bfloat16)
|
62 |
+
assert dtype in half_dtypes
|
63 |
+
assert q.device.type == 'cuda' and q.size(-1) <= 256
|
64 |
+
|
65 |
+
# params
|
66 |
+
b, lq, lk, out_dtype = q.size(0), q.size(1), k.size(1), q.dtype
|
67 |
+
|
68 |
+
def half(x):
|
69 |
+
return x if x.dtype in half_dtypes else x.to(dtype)
|
70 |
+
|
71 |
+
# preprocess query
|
72 |
+
if q_lens is None:
|
73 |
+
q = half(q.flatten(0, 1))
|
74 |
+
q_lens = torch.tensor(
|
75 |
+
[lq] * b, dtype=torch.int32).to(
|
76 |
+
device=q.device, non_blocking=True)
|
77 |
+
else:
|
78 |
+
q = half(torch.cat([u[:v] for u, v in zip(q, q_lens)]))
|
79 |
+
|
80 |
+
# preprocess key, value
|
81 |
+
if k_lens is None:
|
82 |
+
k = half(k.flatten(0, 1))
|
83 |
+
v = half(v.flatten(0, 1))
|
84 |
+
k_lens = torch.tensor(
|
85 |
+
[lk] * b, dtype=torch.int32).to(
|
86 |
+
device=k.device, non_blocking=True)
|
87 |
+
else:
|
88 |
+
k = half(torch.cat([u[:v] for u, v in zip(k, k_lens)]))
|
89 |
+
v = half(torch.cat([u[:v] for u, v in zip(v, k_lens)]))
|
90 |
+
|
91 |
+
q = q.to(v.dtype)
|
92 |
+
k = k.to(v.dtype)
|
93 |
+
|
94 |
+
if q_scale is not None:
|
95 |
+
q = q * q_scale
|
96 |
+
|
97 |
+
if version is not None and version == 3 and not FLASH_ATTN_3_AVAILABLE:
|
98 |
+
warnings.warn(
|
99 |
+
'Flash attention 3 is not available, use flash attention 2 instead.'
|
100 |
+
)
|
101 |
+
|
102 |
+
# apply attention
|
103 |
+
if (version is None or version == 3) and FLASH_ATTN_3_AVAILABLE:
|
104 |
+
# Note: dropout_p, window_size are not supported in FA3 now.
|
105 |
+
x = flash_attn_interface.flash_attn_varlen_func(
|
106 |
+
q=q,
|
107 |
+
k=k,
|
108 |
+
v=v,
|
109 |
+
cu_seqlens_q=torch.cat([q_lens.new_zeros([1]), q_lens]).cumsum(
|
110 |
+
0, dtype=torch.int32).to(q.device, non_blocking=True),
|
111 |
+
cu_seqlens_k=torch.cat([k_lens.new_zeros([1]), k_lens]).cumsum(
|
112 |
+
0, dtype=torch.int32).to(q.device, non_blocking=True),
|
113 |
+
seqused_q=None,
|
114 |
+
seqused_k=None,
|
115 |
+
max_seqlen_q=lq,
|
116 |
+
max_seqlen_k=lk,
|
117 |
+
softmax_scale=softmax_scale,
|
118 |
+
causal=causal,
|
119 |
+
deterministic=deterministic)[0].unflatten(0, (b, lq))
|
120 |
+
elif FLASH_ATTN_2_AVAILABLE:
|
121 |
+
x = flash_attn.flash_attn_varlen_func(
|
122 |
+
q=q,
|
123 |
+
k=k,
|
124 |
+
v=v,
|
125 |
+
cu_seqlens_q=torch.cat([q_lens.new_zeros([1]), q_lens]).cumsum(
|
126 |
+
0, dtype=torch.int32).to(q.device, non_blocking=True),
|
127 |
+
cu_seqlens_k=torch.cat([k_lens.new_zeros([1]), k_lens]).cumsum(
|
128 |
+
0, dtype=torch.int32).to(q.device, non_blocking=True),
|
129 |
+
max_seqlen_q=lq,
|
130 |
+
max_seqlen_k=lk,
|
131 |
+
dropout_p=dropout_p,
|
132 |
+
softmax_scale=softmax_scale,
|
133 |
+
causal=causal,
|
134 |
+
window_size=window_size,
|
135 |
+
deterministic=deterministic).unflatten(0, (b, lq))
|
136 |
+
elif SAGE_ATTN_AVAILABLE:
|
137 |
+
q = q.unsqueeze(0).transpose(1, 2).to(dtype)
|
138 |
+
k = k.unsqueeze(0).transpose(1, 2).to(dtype)
|
139 |
+
v = v.unsqueeze(0).transpose(1, 2).to(dtype)
|
140 |
+
x = sageattn(q, k, v, dropout_p=dropout_p, is_causal=causal)
|
141 |
+
x = x.transpose(1, 2).contiguous()
|
142 |
+
else:
|
143 |
+
q = q.unsqueeze(0).transpose(1, 2).to(dtype)
|
144 |
+
k = k.unsqueeze(0).transpose(1, 2).to(dtype)
|
145 |
+
v = v.unsqueeze(0).transpose(1, 2).to(dtype)
|
146 |
+
x = torch.nn.functional.scaled_dot_product_attention(q, k, v)
|
147 |
+
x = x.transpose(1, 2).contiguous()
|
148 |
+
|
149 |
+
# output
|
150 |
+
return x.type(out_dtype)
|
151 |
+
|
152 |
+
|
153 |
+
def create_sdpa_mask(q, k, q_lens, k_lens, causal=False):
|
154 |
+
b, lq, lk = q.size(0), q.size(1), k.size(1)
|
155 |
+
if q_lens is None:
|
156 |
+
q_lens = torch.tensor([lq] * b, dtype=torch.int32)
|
157 |
+
if k_lens is None:
|
158 |
+
k_lens = torch.tensor([lk] * b, dtype=torch.int32)
|
159 |
+
attn_mask = torch.zeros((b, lq, lk), dtype=torch.bool)
|
160 |
+
for i in range(b):
|
161 |
+
q_len, k_len = q_lens[i], k_lens[i]
|
162 |
+
attn_mask[i, q_len:, :] = True
|
163 |
+
attn_mask[i, :, k_len:] = True
|
164 |
+
|
165 |
+
if causal:
|
166 |
+
causal_mask = torch.triu(torch.ones((lq, lk), dtype=torch.bool), diagonal=1)
|
167 |
+
attn_mask[i, :, :] = torch.logical_or(attn_mask[i, :, :], causal_mask)
|
168 |
+
|
169 |
+
attn_mask = attn_mask.logical_not().to(q.device, non_blocking=True)
|
170 |
+
return attn_mask
|
171 |
+
|
172 |
+
|
173 |
+
def attention(
|
174 |
+
q,
|
175 |
+
k,
|
176 |
+
v,
|
177 |
+
q_lens=None,
|
178 |
+
k_lens=None,
|
179 |
+
dropout_p=0.,
|
180 |
+
softmax_scale=None,
|
181 |
+
q_scale=None,
|
182 |
+
causal=False,
|
183 |
+
window_size=(-1, -1),
|
184 |
+
deterministic=False,
|
185 |
+
dtype=torch.bfloat16,
|
186 |
+
fa_version=None,
|
187 |
+
):
|
188 |
+
if FLASH_ATTN_2_AVAILABLE or FLASH_ATTN_3_AVAILABLE:
|
189 |
+
return flash_attention(
|
190 |
+
q=q,
|
191 |
+
k=k,
|
192 |
+
v=v,
|
193 |
+
q_lens=q_lens,
|
194 |
+
k_lens=k_lens,
|
195 |
+
dropout_p=dropout_p,
|
196 |
+
softmax_scale=softmax_scale,
|
197 |
+
q_scale=q_scale,
|
198 |
+
causal=causal,
|
199 |
+
window_size=window_size,
|
200 |
+
deterministic=deterministic,
|
201 |
+
dtype=dtype,
|
202 |
+
version=fa_version,
|
203 |
+
)
|
204 |
+
else:
|
205 |
+
if q_lens is not None or k_lens is not None:
|
206 |
+
warnings.warn('Padding mask is disabled when using scaled_dot_product_attention. It can have a significant impact on performance.')
|
207 |
+
attn_mask = None
|
208 |
+
|
209 |
+
q = q.transpose(1, 2).to(dtype)
|
210 |
+
k = k.transpose(1, 2).to(dtype)
|
211 |
+
v = v.transpose(1, 2).to(dtype)
|
212 |
+
|
213 |
+
out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask, is_causal=causal, dropout_p=dropout_p)
|
214 |
+
|
215 |
+
out = out.transpose(1, 2).contiguous()
|
216 |
+
return out
|
217 |
+
|
218 |
+
|
219 |
+
|
220 |
+
def sinusoidal_embedding_1d(dim, position):
|
221 |
+
# preprocess
|
222 |
+
assert dim % 2 == 0
|
223 |
+
half = dim // 2
|
224 |
+
position = position.type(torch.float64)
|
225 |
+
|
226 |
+
# calculation
|
227 |
+
sinusoid = torch.outer(
|
228 |
+
position, torch.pow(10000, -torch.arange(half).to(position).div(half)))
|
229 |
+
x = torch.cat([torch.cos(sinusoid), torch.sin(sinusoid)], dim=1)
|
230 |
+
return x
|
231 |
+
|
232 |
+
|
233 |
+
@amp.autocast(enabled=False, device_type="cuda")
|
234 |
+
def rope_params(max_seq_len, dim, theta=10000):
|
235 |
+
assert dim % 2 == 0
|
236 |
+
freqs = torch.outer(
|
237 |
+
torch.arange(max_seq_len),
|
238 |
+
1.0 / torch.pow(theta,
|
239 |
+
torch.arange(0, dim, 2).to(torch.float64).div(dim)))
|
240 |
+
freqs = torch.polar(torch.ones_like(freqs), freqs)
|
241 |
+
return freqs
|
242 |
+
|
243 |
+
|
244 |
+
@amp.autocast(enabled=False, device_type="cuda")
|
245 |
+
def rope_apply(x, grid_sizes, freqs):
|
246 |
+
n, c = x.size(2), x.size(3) // 2
|
247 |
+
|
248 |
+
# split freqs
|
249 |
+
freqs = freqs.split([c - 2 * (c // 3), c // 3, c // 3], dim=1)
|
250 |
+
|
251 |
+
# loop over samples
|
252 |
+
output = []
|
253 |
+
for i, (f, h, w) in enumerate(grid_sizes.tolist()):
|
254 |
+
seq_len = f * h * w
|
255 |
+
|
256 |
+
# precompute multipliers
|
257 |
+
x_i = torch.view_as_complex(x[i, :seq_len].to(torch.float64).reshape(
|
258 |
+
seq_len, n, -1, 2))
|
259 |
+
freqs_i = torch.cat([
|
260 |
+
freqs[0][:f].view(f, 1, 1, -1).expand(f, h, w, -1),
|
261 |
+
freqs[1][:h].view(1, h, 1, -1).expand(f, h, w, -1),
|
262 |
+
freqs[2][:w].view(1, 1, w, -1).expand(f, h, w, -1)
|
263 |
+
],
|
264 |
+
dim=-1).reshape(seq_len, 1, -1)
|
265 |
+
|
266 |
+
# apply rotary embedding
|
267 |
+
x_i = torch.view_as_real(x_i * freqs_i).flatten(2)
|
268 |
+
x_i = torch.cat([x_i, x[i, seq_len:]])
|
269 |
+
|
270 |
+
# append to collection
|
271 |
+
output.append(x_i)
|
272 |
+
return torch.stack(output).float()
|
273 |
+
|
274 |
+
|
275 |
+
class WanRMSNorm(nn.Module):
|
276 |
+
|
277 |
+
def __init__(self, dim, eps=1e-5):
|
278 |
+
super().__init__()
|
279 |
+
self.dim = dim
|
280 |
+
self.eps = eps
|
281 |
+
self.weight = nn.Parameter(torch.ones(dim))
|
282 |
+
|
283 |
+
def forward(self, x):
|
284 |
+
return self._norm(x.float()).type_as(x) * self.weight
|
285 |
+
|
286 |
+
def _norm(self, x):
|
287 |
+
return x * torch.rsqrt(x.pow(2).mean(dim=-1, keepdim=True) + self.eps)
|
288 |
+
|
289 |
+
|
290 |
+
class WanLayerNorm(nn.LayerNorm):
|
291 |
+
|
292 |
+
def __init__(self, dim, eps=1e-6, elementwise_affine=False):
|
293 |
+
super().__init__(dim, elementwise_affine=elementwise_affine, eps=eps)
|
294 |
+
|
295 |
+
def forward(self, x):
|
296 |
+
return super().forward(x.float()).type_as(x)
|
297 |
+
|
298 |
+
|
299 |
+
class WanSelfAttention(nn.Module):
|
300 |
+
|
301 |
+
def __init__(self,
|
302 |
+
dim,
|
303 |
+
num_heads,
|
304 |
+
window_size=(-1, -1),
|
305 |
+
qk_norm=True,
|
306 |
+
eps=1e-6):
|
307 |
+
assert dim % num_heads == 0
|
308 |
+
super().__init__()
|
309 |
+
self.dim = dim
|
310 |
+
self.num_heads = num_heads
|
311 |
+
self.head_dim = dim // num_heads
|
312 |
+
self.window_size = window_size
|
313 |
+
self.qk_norm = qk_norm
|
314 |
+
self.eps = eps
|
315 |
+
|
316 |
+
# layers
|
317 |
+
self.q = nn.Linear(dim, dim)
|
318 |
+
self.k = nn.Linear(dim, dim)
|
319 |
+
self.v = nn.Linear(dim, dim)
|
320 |
+
self.o = nn.Linear(dim, dim)
|
321 |
+
self.norm_q = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity()
|
322 |
+
self.norm_k = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity()
|
323 |
+
|
324 |
+
def forward(self, x, seq_lens, grid_sizes, freqs):
|
325 |
+
b, s, n, d = *x.shape[:2], self.num_heads, self.head_dim
|
326 |
+
|
327 |
+
# query, key, value function
|
328 |
+
def qkv_fn(x):
|
329 |
+
q = self.norm_q(self.q(x)).view(b, s, n, d)
|
330 |
+
k = self.norm_k(self.k(x)).view(b, s, n, d)
|
331 |
+
v = self.v(x).view(b, s, n, d)
|
332 |
+
return q, k, v
|
333 |
+
|
334 |
+
q, k, v = qkv_fn(x)
|
335 |
+
|
336 |
+
x = flash_attention(
|
337 |
+
q=rope_apply(q, grid_sizes, freqs),
|
338 |
+
k=rope_apply(k, grid_sizes, freqs),
|
339 |
+
v=v,
|
340 |
+
k_lens=seq_lens,
|
341 |
+
window_size=self.window_size)
|
342 |
+
|
343 |
+
# output
|
344 |
+
x = x.flatten(2)
|
345 |
+
x = self.o(x)
|
346 |
+
return x
|
347 |
+
|
348 |
+
|
349 |
+
class WanT2VCrossAttention(WanSelfAttention):
|
350 |
+
|
351 |
+
def forward(self, x, context, context_lens):
|
352 |
+
"""
|
353 |
+
x: [B, L1, C].
|
354 |
+
context: [B, L2, C].
|
355 |
+
context_lens: [B].
|
356 |
+
"""
|
357 |
+
b, n, d = x.size(0), self.num_heads, self.head_dim
|
358 |
+
|
359 |
+
# compute query, key, value
|
360 |
+
q = self.norm_q(self.q(x)).view(b, -1, n, d)
|
361 |
+
k = self.norm_k(self.k(context)).view(b, -1, n, d)
|
362 |
+
v = self.v(context).view(b, -1, n, d)
|
363 |
+
|
364 |
+
# compute attention
|
365 |
+
x = flash_attention(q, k, v, k_lens=context_lens)
|
366 |
+
|
367 |
+
# output
|
368 |
+
x = x.flatten(2)
|
369 |
+
x = self.o(x)
|
370 |
+
return x
|
371 |
+
|
372 |
+
class WanI2VCrossAttentionProcessor:
|
373 |
+
def __call__(self, attn, x, context, context_lens) -> torch.Tensor:
|
374 |
+
"""
|
375 |
+
x: [B, L1, C].
|
376 |
+
context: [B, L2, C].
|
377 |
+
context_lens: [B].
|
378 |
+
"""
|
379 |
+
context_img = context[:, :257]
|
380 |
+
context = context[:, 257:]
|
381 |
+
b, n, d = x.size(0), attn.num_heads, attn.head_dim
|
382 |
+
|
383 |
+
# compute query, key, value
|
384 |
+
q = attn.norm_q(attn.q(x)).view(b, -1, n, d)
|
385 |
+
k = attn.norm_k(attn.k(context)).view(b, -1, n, d)
|
386 |
+
v = attn.v(context).view(b, -1, n, d)
|
387 |
+
k_img = attn.norm_k_img(attn.k_img(context_img)).view(b, -1, n, d)
|
388 |
+
v_img = attn.v_img(context_img).view(b, -1, n, d)
|
389 |
+
img_x = flash_attention(q, k_img, v_img, k_lens=None)
|
390 |
+
# compute attention
|
391 |
+
x = flash_attention(q, k, v, k_lens=context_lens)
|
392 |
+
|
393 |
+
# output
|
394 |
+
x = x.flatten(2)
|
395 |
+
img_x = img_x.flatten(2)
|
396 |
+
x = x + img_x
|
397 |
+
x = attn.o(x)
|
398 |
+
return x
|
399 |
+
|
400 |
+
class WanI2VCrossAttention(WanSelfAttention):
|
401 |
+
|
402 |
+
def __init__(self,
|
403 |
+
dim,
|
404 |
+
num_heads,
|
405 |
+
window_size=(-1, -1),
|
406 |
+
qk_norm=True,
|
407 |
+
eps=1e-6):
|
408 |
+
super().__init__(dim, num_heads, window_size, qk_norm, eps)
|
409 |
+
|
410 |
+
self.k_img = nn.Linear(dim, dim)
|
411 |
+
self.v_img = nn.Linear(dim, dim)
|
412 |
+
# self.alpha = nn.Parameter(torch.zeros((1, )))
|
413 |
+
self.norm_k_img = WanRMSNorm(
|
414 |
+
dim, eps=eps) if qk_norm else nn.Identity()
|
415 |
+
|
416 |
+
processor = WanI2VCrossAttentionProcessor()
|
417 |
+
self.set_processor(processor)
|
418 |
+
|
419 |
+
def set_processor(self, processor) -> None:
|
420 |
+
self.processor = processor
|
421 |
+
|
422 |
+
def get_processor(self):
|
423 |
+
return self.processor
|
424 |
+
|
425 |
+
def forward(self, x, context, context_lens, audio_proj, audio_context_lens, latents_num_frames, audio_scale: float = 1.0, **kwargs):
|
426 |
+
"""
|
427 |
+
x: [B, L1, C].
|
428 |
+
context: [B, L2, C].
|
429 |
+
context_lens: [B].
|
430 |
+
"""
|
431 |
+
if audio_proj is None:
|
432 |
+
return self.processor(self, x, context, context_lens)
|
433 |
+
else:
|
434 |
+
return self.processor(self, x, context, context_lens, audio_proj, audio_context_lens, latents_num_frames, audio_scale)
|
435 |
+
|
436 |
+
WANX_CROSSATTENTION_CLASSES = {
|
437 |
+
't2v_cross_attn': WanT2VCrossAttention,
|
438 |
+
'i2v_cross_attn': WanI2VCrossAttention,
|
439 |
+
}
|
440 |
+
|
441 |
+
|
442 |
+
class WanAttentionBlock(nn.Module):
|
443 |
+
|
444 |
+
def __init__(self,
|
445 |
+
cross_attn_type,
|
446 |
+
dim,
|
447 |
+
ffn_dim,
|
448 |
+
num_heads,
|
449 |
+
window_size=(-1, -1),
|
450 |
+
qk_norm=True,
|
451 |
+
cross_attn_norm=False,
|
452 |
+
eps=1e-6):
|
453 |
+
super().__init__()
|
454 |
+
self.dim = dim
|
455 |
+
self.ffn_dim = ffn_dim
|
456 |
+
self.num_heads = num_heads
|
457 |
+
self.window_size = window_size
|
458 |
+
self.qk_norm = qk_norm
|
459 |
+
self.cross_attn_norm = cross_attn_norm
|
460 |
+
self.eps = eps
|
461 |
+
|
462 |
+
# layers
|
463 |
+
self.norm1 = WanLayerNorm(dim, eps)
|
464 |
+
self.self_attn = WanSelfAttention(dim, num_heads, window_size, qk_norm,
|
465 |
+
eps)
|
466 |
+
self.norm3 = WanLayerNorm(
|
467 |
+
dim, eps,
|
468 |
+
elementwise_affine=True) if cross_attn_norm else nn.Identity()
|
469 |
+
self.cross_attn = WANX_CROSSATTENTION_CLASSES[cross_attn_type](
|
470 |
+
dim, num_heads, (-1, -1), qk_norm, eps)
|
471 |
+
self.norm2 = WanLayerNorm(dim, eps)
|
472 |
+
self.ffn = nn.Sequential(
|
473 |
+
nn.Linear(dim, ffn_dim), nn.GELU(approximate='tanh'),
|
474 |
+
nn.Linear(ffn_dim, dim))
|
475 |
+
|
476 |
+
# modulation
|
477 |
+
self.modulation = nn.Parameter(torch.randn(1, 6, dim) / dim**0.5)
|
478 |
+
|
479 |
+
def forward(
|
480 |
+
self,
|
481 |
+
x,
|
482 |
+
e,
|
483 |
+
seq_lens,
|
484 |
+
grid_sizes,
|
485 |
+
freqs,
|
486 |
+
context,
|
487 |
+
context_lens,
|
488 |
+
**kwargs,
|
489 |
+
):
|
490 |
+
assert e.dtype == torch.float32
|
491 |
+
with amp.autocast(dtype=torch.float32, device_type="cuda"):
|
492 |
+
e = (self.modulation.to(dtype=e.dtype, device=e.device) + e).chunk(6, dim=1)
|
493 |
+
assert e[0].dtype == torch.float32
|
494 |
+
|
495 |
+
# self-attention
|
496 |
+
y = self.self_attn(
|
497 |
+
self.norm1(x).float() * (1 + e[1]) + e[0], seq_lens, grid_sizes,
|
498 |
+
freqs)
|
499 |
+
with amp.autocast(dtype=torch.float32, device_type="cuda"):
|
500 |
+
x = x + y * e[2]
|
501 |
+
|
502 |
+
# cross-attention & ffn function
|
503 |
+
def cross_attn_ffn(x, context, context_lens, e, **kwargs):
|
504 |
+
x = x + self.cross_attn(self.norm3(x), context, context_lens, **kwargs)
|
505 |
+
y = self.ffn(self.norm2(x).float() * (1 + e[4]) + e[3])
|
506 |
+
with amp.autocast(dtype=torch.float32, device_type="cuda"):
|
507 |
+
x = x + y * e[5]
|
508 |
+
return x
|
509 |
+
|
510 |
+
x = cross_attn_ffn(x, context, context_lens, e, **kwargs)
|
511 |
+
return x
|
512 |
+
|
513 |
+
|
514 |
+
class Head(nn.Module):
|
515 |
+
|
516 |
+
def __init__(self, dim, out_dim, patch_size, eps=1e-6):
|
517 |
+
super().__init__()
|
518 |
+
self.dim = dim
|
519 |
+
self.out_dim = out_dim
|
520 |
+
self.patch_size = patch_size
|
521 |
+
self.eps = eps
|
522 |
+
|
523 |
+
# layers
|
524 |
+
out_dim = math.prod(patch_size) * out_dim
|
525 |
+
self.norm = WanLayerNorm(dim, eps)
|
526 |
+
self.head = nn.Linear(dim, out_dim)
|
527 |
+
|
528 |
+
# modulation
|
529 |
+
self.modulation = nn.Parameter(torch.randn(1, 2, dim) / dim**0.5)
|
530 |
+
|
531 |
+
def forward(self, x, e):
|
532 |
+
assert e.dtype == torch.float32
|
533 |
+
with amp.autocast(dtype=torch.float32, device_type="cuda"):
|
534 |
+
e = (self.modulation.to(dtype=e.dtype, device=e.device) + e.unsqueeze(1)).chunk(2, dim=1)
|
535 |
+
x = (self.head(self.norm(x) * (1 + e[1]) + e[0]))
|
536 |
+
return x
|
537 |
+
|
538 |
+
|
539 |
+
class MLPProj(torch.nn.Module):
|
540 |
+
|
541 |
+
def __init__(self, in_dim, out_dim):
|
542 |
+
super().__init__()
|
543 |
+
|
544 |
+
self.proj = torch.nn.Sequential(
|
545 |
+
torch.nn.LayerNorm(in_dim), torch.nn.Linear(in_dim, in_dim),
|
546 |
+
torch.nn.GELU(), torch.nn.Linear(in_dim, out_dim),
|
547 |
+
torch.nn.LayerNorm(out_dim))
|
548 |
+
|
549 |
+
def forward(self, image_embeds):
|
550 |
+
clip_extra_context_tokens = self.proj(image_embeds)
|
551 |
+
return clip_extra_context_tokens
|
552 |
+
|
553 |
+
|
554 |
+
class WanModel(nn.Module):
|
555 |
+
|
556 |
+
def __init__(self,
|
557 |
+
model_type='t2v',
|
558 |
+
patch_size=(1, 2, 2),
|
559 |
+
text_len=512,
|
560 |
+
in_dim=16,
|
561 |
+
dim=2048,
|
562 |
+
ffn_dim=8192,
|
563 |
+
freq_dim=256,
|
564 |
+
text_dim=4096,
|
565 |
+
out_dim=16,
|
566 |
+
num_heads=16,
|
567 |
+
num_layers=32,
|
568 |
+
window_size=(-1, -1),
|
569 |
+
qk_norm=True,
|
570 |
+
cross_attn_norm=False,
|
571 |
+
eps=1e-6):
|
572 |
+
super().__init__()
|
573 |
+
|
574 |
+
assert model_type in ['t2v', 'i2v']
|
575 |
+
self.model_type = model_type
|
576 |
+
|
577 |
+
self.patch_size = patch_size
|
578 |
+
self.text_len = text_len
|
579 |
+
self.in_dim = in_dim
|
580 |
+
self.dim = dim
|
581 |
+
self.ffn_dim = ffn_dim
|
582 |
+
self.freq_dim = freq_dim
|
583 |
+
self.text_dim = text_dim
|
584 |
+
self.out_dim = out_dim
|
585 |
+
self.num_heads = num_heads
|
586 |
+
self.num_layers = num_layers
|
587 |
+
self.window_size = window_size
|
588 |
+
self.qk_norm = qk_norm
|
589 |
+
self.cross_attn_norm = cross_attn_norm
|
590 |
+
self.eps = eps
|
591 |
+
|
592 |
+
# embeddings
|
593 |
+
self.patch_embedding = nn.Conv3d(
|
594 |
+
in_dim, dim, kernel_size=patch_size, stride=patch_size)
|
595 |
+
self.text_embedding = nn.Sequential(
|
596 |
+
nn.Linear(text_dim, dim), nn.GELU(approximate='tanh'),
|
597 |
+
nn.Linear(dim, dim))
|
598 |
+
|
599 |
+
self.time_embedding = nn.Sequential(
|
600 |
+
nn.Linear(freq_dim, dim), nn.SiLU(), nn.Linear(dim, dim))
|
601 |
+
self.time_projection = nn.Sequential(nn.SiLU(), nn.Linear(dim, dim * 6))
|
602 |
+
|
603 |
+
# blocks
|
604 |
+
cross_attn_type = 't2v_cross_attn' if model_type == 't2v' else 'i2v_cross_attn'
|
605 |
+
self.blocks = nn.ModuleList([
|
606 |
+
WanAttentionBlock(cross_attn_type, dim, ffn_dim, num_heads,
|
607 |
+
window_size, qk_norm, cross_attn_norm, eps)
|
608 |
+
for _ in range(num_layers)
|
609 |
+
])
|
610 |
+
|
611 |
+
# head
|
612 |
+
self.head = Head(dim, out_dim, patch_size, eps)
|
613 |
+
|
614 |
+
# buffers (don't use register_buffer otherwise dtype will be changed in to())
|
615 |
+
assert (dim % num_heads) == 0 and (dim // num_heads) % 2 == 0
|
616 |
+
d = dim // num_heads
|
617 |
+
self.freqs = torch.cat([
|
618 |
+
rope_params(1024, d - 4 * (d // 6)),
|
619 |
+
rope_params(1024, 2 * (d // 6)),
|
620 |
+
rope_params(1024, 2 * (d // 6))
|
621 |
+
],
|
622 |
+
dim=1)
|
623 |
+
|
624 |
+
if model_type == 'i2v':
|
625 |
+
self.img_emb = MLPProj(1280, dim)
|
626 |
+
|
627 |
+
# initialize weights
|
628 |
+
self.init_weights()
|
629 |
+
|
630 |
+
def forward(
|
631 |
+
self,
|
632 |
+
x,
|
633 |
+
timestep,
|
634 |
+
context,
|
635 |
+
seq_len,
|
636 |
+
clip_fea=None,
|
637 |
+
y=None,
|
638 |
+
use_gradient_checkpointing=False,
|
639 |
+
audio_proj=None,
|
640 |
+
audio_context_lens=None,
|
641 |
+
latents_num_frames=None,
|
642 |
+
audio_scale=1.0,
|
643 |
+
**kwargs,
|
644 |
+
):
|
645 |
+
"""
|
646 |
+
x: A list of videos each with shape [C, T, H, W].
|
647 |
+
t: [B].
|
648 |
+
context: A list of text embeddings each with shape [L, C].
|
649 |
+
"""
|
650 |
+
if self.model_type == 'i2v':
|
651 |
+
assert clip_fea is not None and y is not None
|
652 |
+
# params
|
653 |
+
device = x[0].device
|
654 |
+
if self.freqs.device != device:
|
655 |
+
self.freqs = self.freqs.to(device)
|
656 |
+
|
657 |
+
if y is not None:
|
658 |
+
x = [torch.cat([u, v], dim=0) for u, v in zip(x, y)]
|
659 |
+
|
660 |
+
# embeddings
|
661 |
+
x = [self.patch_embedding(u.unsqueeze(0)) for u in x]
|
662 |
+
grid_sizes = torch.stack(
|
663 |
+
[torch.tensor(u.shape[2:], dtype=torch.long) for u in x]) # [B,2]
|
664 |
+
x = [u.flatten(2).transpose(1, 2) for u in x] # [[C, L, T],,]
|
665 |
+
# print(f"x0.shape:{x[0].shape}")
|
666 |
+
seq_lens = torch.tensor([u.size(1) for u in x], dtype=torch.long)
|
667 |
+
assert seq_lens.max() <= seq_len
|
668 |
+
x = torch.cat([
|
669 |
+
torch.cat([u, u.new_zeros(1, seq_len - u.size(1), u.size(2))],
|
670 |
+
dim=1) for u in x
|
671 |
+
])
|
672 |
+
|
673 |
+
# time embeddings
|
674 |
+
with amp.autocast(dtype=torch.float32, device_type="cuda"):
|
675 |
+
e = self.time_embedding(
|
676 |
+
sinusoidal_embedding_1d(self.freq_dim, timestep).float())
|
677 |
+
e0 = self.time_projection(e).unflatten(1, (6, self.dim))
|
678 |
+
assert e.dtype == torch.float32 and e0.dtype == torch.float32
|
679 |
+
|
680 |
+
# context
|
681 |
+
context_lens = None
|
682 |
+
context = self.text_embedding(
|
683 |
+
torch.stack([
|
684 |
+
torch.cat(
|
685 |
+
[u, u.new_zeros(self.text_len - u.size(0), u.size(1))])
|
686 |
+
for u in context
|
687 |
+
]))
|
688 |
+
|
689 |
+
if clip_fea is not None:
|
690 |
+
context_clip = self.img_emb(clip_fea) # bs x 257 x dim
|
691 |
+
context = torch.concat([context_clip, context], dim=1)
|
692 |
+
|
693 |
+
# arguments
|
694 |
+
kwargs = dict(
|
695 |
+
e=e0,
|
696 |
+
seq_lens=seq_lens,
|
697 |
+
grid_sizes=grid_sizes,
|
698 |
+
freqs=self.freqs,
|
699 |
+
context=context,
|
700 |
+
context_lens=context_lens,
|
701 |
+
audio_proj=audio_proj,
|
702 |
+
audio_context_lens=audio_context_lens,
|
703 |
+
latents_num_frames=latents_num_frames,
|
704 |
+
audio_scale=audio_scale)
|
705 |
+
|
706 |
+
def create_custom_forward(module):
|
707 |
+
def custom_forward(*inputs, **kwargs):
|
708 |
+
return module(*inputs, **kwargs)
|
709 |
+
return custom_forward
|
710 |
+
|
711 |
+
for block in self.blocks:
|
712 |
+
if self.training and use_gradient_checkpointing:
|
713 |
+
x = torch.utils.checkpoint.checkpoint(
|
714 |
+
create_custom_forward(block),
|
715 |
+
x, **kwargs,
|
716 |
+
use_reentrant=False,
|
717 |
+
)
|
718 |
+
else:
|
719 |
+
x = block(x, **kwargs)
|
720 |
+
|
721 |
+
# head
|
722 |
+
x = self.head(x, e)
|
723 |
+
|
724 |
+
# unpatchify
|
725 |
+
x = self.unpatchify(x, grid_sizes)
|
726 |
+
x = torch.stack(x).float()
|
727 |
+
return x
|
728 |
+
|
729 |
+
def unpatchify(self, x, grid_sizes):
|
730 |
+
c = self.out_dim
|
731 |
+
out = []
|
732 |
+
for u, v in zip(x, grid_sizes.tolist()):
|
733 |
+
u = u[:math.prod(v)].view(*v, *self.patch_size, c)
|
734 |
+
u = torch.einsum('fhwpqrc->cfphqwr', u)
|
735 |
+
u = u.reshape(c, *[i * j for i, j in zip(v, self.patch_size)])
|
736 |
+
out.append(u)
|
737 |
+
return out
|
738 |
+
|
739 |
+
def init_weights(self):
|
740 |
+
# basic init
|
741 |
+
for m in self.modules():
|
742 |
+
if isinstance(m, nn.Linear):
|
743 |
+
nn.init.xavier_uniform_(m.weight)
|
744 |
+
if m.bias is not None:
|
745 |
+
nn.init.zeros_(m.bias)
|
746 |
+
|
747 |
+
# init embeddings
|
748 |
+
nn.init.xavier_uniform_(self.patch_embedding.weight.flatten(1))
|
749 |
+
for m in self.text_embedding.modules():
|
750 |
+
if isinstance(m, nn.Linear):
|
751 |
+
nn.init.normal_(m.weight, std=.02)
|
752 |
+
for m in self.time_embedding.modules():
|
753 |
+
if isinstance(m, nn.Linear):
|
754 |
+
nn.init.normal_(m.weight, std=.02)
|
755 |
+
|
756 |
+
# init output layer
|
757 |
+
nn.init.zeros_(self.head.head.weight)
|
758 |
+
|
759 |
+
@staticmethod
|
760 |
+
def state_dict_converter():
|
761 |
+
return WanModelStateDictConverter()
|
762 |
+
|
763 |
+
@property
|
764 |
+
def attn_processors(self): #copy from https://github.com/XLabs-AI/x-flux/blob/main/src/flux/model.py
|
765 |
+
# set recursively
|
766 |
+
processors = {}
|
767 |
+
|
768 |
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors):
|
769 |
+
if hasattr(module, "set_processor"):
|
770 |
+
processors[f"{name}.processor"] = module.processor
|
771 |
+
|
772 |
+
for sub_name, child in module.named_children():
|
773 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
774 |
+
|
775 |
+
return processors
|
776 |
+
|
777 |
+
for name, module in self.named_children():
|
778 |
+
fn_recursive_add_processors(name, module, processors)
|
779 |
+
|
780 |
+
return processors
|
781 |
+
|
782 |
+
def set_attn_processor(self, processor):
|
783 |
+
r""" copy from https://github.com/XLabs-AI/x-flux/blob/main/src/flux/model.py
|
784 |
+
Sets the attention processor to use to compute attention.
|
785 |
+
|
786 |
+
Parameters:
|
787 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
788 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
789 |
+
for **all** `Attention` layers.
|
790 |
+
|
791 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
792 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
793 |
+
|
794 |
+
"""
|
795 |
+
count = len(self.attn_processors.keys())
|
796 |
+
|
797 |
+
if isinstance(processor, dict) and len(processor) != count:
|
798 |
+
raise ValueError(
|
799 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
800 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
801 |
+
)
|
802 |
+
|
803 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
804 |
+
if hasattr(module, "set_processor"):
|
805 |
+
if not isinstance(processor, dict):
|
806 |
+
module.set_processor(processor)
|
807 |
+
else:
|
808 |
+
module.set_processor(processor.pop(f"{name}.processor"))
|
809 |
+
|
810 |
+
for sub_name, child in module.named_children():
|
811 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
812 |
+
|
813 |
+
for name, module in self.named_children():
|
814 |
+
fn_recursive_attn_processor(name, module, processor)
|
815 |
+
|
816 |
+
|
817 |
+
class WanModelStateDictConverter:
|
818 |
+
def __init__(self):
|
819 |
+
pass
|
820 |
+
|
821 |
+
def from_diffusers(self, state_dict):
|
822 |
+
return state_dict
|
823 |
+
|
824 |
+
def from_civitai(self, state_dict):
|
825 |
+
if hash_state_dict_keys(state_dict) == "9269f8db9040a9d860eaca435be61814":
|
826 |
+
config = {
|
827 |
+
"model_type": "t2v",
|
828 |
+
"patch_size": (1, 2, 2),
|
829 |
+
"text_len": 512,
|
830 |
+
"in_dim": 16,
|
831 |
+
"dim": 1536,
|
832 |
+
"ffn_dim": 8960,
|
833 |
+
"freq_dim": 256,
|
834 |
+
"text_dim": 4096,
|
835 |
+
"out_dim": 16,
|
836 |
+
"num_heads": 12,
|
837 |
+
"num_layers": 30,
|
838 |
+
"window_size": (-1, -1),
|
839 |
+
"qk_norm": True,
|
840 |
+
"cross_attn_norm": True,
|
841 |
+
"eps": 1e-6,
|
842 |
+
}
|
843 |
+
elif hash_state_dict_keys(state_dict) == "aafcfd9672c3a2456dc46e1cb6e52c70":
|
844 |
+
config = {
|
845 |
+
"model_type": "t2v",
|
846 |
+
"patch_size": (1, 2, 2),
|
847 |
+
"text_len": 512,
|
848 |
+
"in_dim": 16,
|
849 |
+
"dim": 5120,
|
850 |
+
"ffn_dim": 13824,
|
851 |
+
"freq_dim": 256,
|
852 |
+
"text_dim": 4096,
|
853 |
+
"out_dim": 16,
|
854 |
+
"num_heads": 40,
|
855 |
+
"num_layers": 40,
|
856 |
+
"window_size": (-1, -1),
|
857 |
+
"qk_norm": True,
|
858 |
+
"cross_attn_norm": True,
|
859 |
+
"eps": 1e-6,
|
860 |
+
}
|
861 |
+
elif hash_state_dict_keys(state_dict) == "6bfcfb3b342cb286ce886889d519a77e":
|
862 |
+
config = {
|
863 |
+
"model_type": "i2v",
|
864 |
+
"patch_size": (1, 2, 2),
|
865 |
+
"text_len": 512,
|
866 |
+
"in_dim": 36,
|
867 |
+
"dim": 5120,
|
868 |
+
"ffn_dim": 13824,
|
869 |
+
"freq_dim": 256,
|
870 |
+
"text_dim": 4096,
|
871 |
+
"out_dim": 16,
|
872 |
+
"num_heads": 40,
|
873 |
+
"num_layers": 40,
|
874 |
+
"window_size": (-1, -1),
|
875 |
+
"qk_norm": True,
|
876 |
+
"cross_attn_norm": True,
|
877 |
+
"eps": 1e-6,
|
878 |
+
}
|
879 |
+
else:
|
880 |
+
config = {}
|
881 |
+
return state_dict, config
|
diffsynth/models/wan_video_image_encoder.py
ADDED
@@ -0,0 +1,904 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Concise re-implementation of
|
3 |
+
``https://github.com/openai/CLIP'' and
|
4 |
+
``https://github.com/mlfoundations/open_clip''.
|
5 |
+
"""
|
6 |
+
import math
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
import torch.nn.functional as F
|
10 |
+
import torchvision.transforms as T
|
11 |
+
from .wan_video_dit import flash_attention
|
12 |
+
|
13 |
+
|
14 |
+
class SelfAttention(nn.Module):
|
15 |
+
|
16 |
+
def __init__(self, dim, num_heads, dropout=0.1, eps=1e-5):
|
17 |
+
assert dim % num_heads == 0
|
18 |
+
super().__init__()
|
19 |
+
self.dim = dim
|
20 |
+
self.num_heads = num_heads
|
21 |
+
self.head_dim = dim // num_heads
|
22 |
+
self.eps = eps
|
23 |
+
|
24 |
+
# layers
|
25 |
+
self.q = nn.Linear(dim, dim)
|
26 |
+
self.k = nn.Linear(dim, dim)
|
27 |
+
self.v = nn.Linear(dim, dim)
|
28 |
+
self.o = nn.Linear(dim, dim)
|
29 |
+
self.dropout = nn.Dropout(dropout)
|
30 |
+
|
31 |
+
def forward(self, x, mask):
|
32 |
+
"""
|
33 |
+
x: [B, L, C].
|
34 |
+
"""
|
35 |
+
b, s, c, n, d = *x.size(), self.num_heads, self.head_dim
|
36 |
+
|
37 |
+
# compute query, key, value
|
38 |
+
q = self.q(x).reshape(b, s, n, d).permute(0, 2, 1, 3)
|
39 |
+
k = self.k(x).reshape(b, s, n, d).permute(0, 2, 1, 3)
|
40 |
+
v = self.v(x).reshape(b, s, n, d).permute(0, 2, 1, 3)
|
41 |
+
|
42 |
+
# compute attention
|
43 |
+
p = self.dropout.p if self.training else 0.0
|
44 |
+
x = F.scaled_dot_product_attention(q, k, v, mask, p)
|
45 |
+
x = x.permute(0, 2, 1, 3).reshape(b, s, c)
|
46 |
+
|
47 |
+
# output
|
48 |
+
x = self.o(x)
|
49 |
+
x = self.dropout(x)
|
50 |
+
return x
|
51 |
+
|
52 |
+
|
53 |
+
class AttentionBlock(nn.Module):
|
54 |
+
|
55 |
+
def __init__(self, dim, num_heads, post_norm, dropout=0.1, eps=1e-5):
|
56 |
+
super().__init__()
|
57 |
+
self.dim = dim
|
58 |
+
self.num_heads = num_heads
|
59 |
+
self.post_norm = post_norm
|
60 |
+
self.eps = eps
|
61 |
+
|
62 |
+
# layers
|
63 |
+
self.attn = SelfAttention(dim, num_heads, dropout, eps)
|
64 |
+
self.norm1 = nn.LayerNorm(dim, eps=eps)
|
65 |
+
self.ffn = nn.Sequential(
|
66 |
+
nn.Linear(dim, dim * 4), nn.GELU(), nn.Linear(dim * 4, dim),
|
67 |
+
nn.Dropout(dropout))
|
68 |
+
self.norm2 = nn.LayerNorm(dim, eps=eps)
|
69 |
+
|
70 |
+
def forward(self, x, mask):
|
71 |
+
if self.post_norm:
|
72 |
+
x = self.norm1(x + self.attn(x, mask))
|
73 |
+
x = self.norm2(x + self.ffn(x))
|
74 |
+
else:
|
75 |
+
x = x + self.attn(self.norm1(x), mask)
|
76 |
+
x = x + self.ffn(self.norm2(x))
|
77 |
+
return x
|
78 |
+
|
79 |
+
|
80 |
+
class XLMRoberta(nn.Module):
|
81 |
+
"""
|
82 |
+
XLMRobertaModel with no pooler and no LM head.
|
83 |
+
"""
|
84 |
+
|
85 |
+
def __init__(self,
|
86 |
+
vocab_size=250002,
|
87 |
+
max_seq_len=514,
|
88 |
+
type_size=1,
|
89 |
+
pad_id=1,
|
90 |
+
dim=1024,
|
91 |
+
num_heads=16,
|
92 |
+
num_layers=24,
|
93 |
+
post_norm=True,
|
94 |
+
dropout=0.1,
|
95 |
+
eps=1e-5):
|
96 |
+
super().__init__()
|
97 |
+
self.vocab_size = vocab_size
|
98 |
+
self.max_seq_len = max_seq_len
|
99 |
+
self.type_size = type_size
|
100 |
+
self.pad_id = pad_id
|
101 |
+
self.dim = dim
|
102 |
+
self.num_heads = num_heads
|
103 |
+
self.num_layers = num_layers
|
104 |
+
self.post_norm = post_norm
|
105 |
+
self.eps = eps
|
106 |
+
|
107 |
+
# embeddings
|
108 |
+
self.token_embedding = nn.Embedding(vocab_size, dim, padding_idx=pad_id)
|
109 |
+
self.type_embedding = nn.Embedding(type_size, dim)
|
110 |
+
self.pos_embedding = nn.Embedding(max_seq_len, dim, padding_idx=pad_id)
|
111 |
+
self.dropout = nn.Dropout(dropout)
|
112 |
+
|
113 |
+
# blocks
|
114 |
+
self.blocks = nn.ModuleList([
|
115 |
+
AttentionBlock(dim, num_heads, post_norm, dropout, eps)
|
116 |
+
for _ in range(num_layers)
|
117 |
+
])
|
118 |
+
|
119 |
+
# norm layer
|
120 |
+
self.norm = nn.LayerNorm(dim, eps=eps)
|
121 |
+
|
122 |
+
def forward(self, ids):
|
123 |
+
"""
|
124 |
+
ids: [B, L] of torch.LongTensor.
|
125 |
+
"""
|
126 |
+
b, s = ids.shape
|
127 |
+
mask = ids.ne(self.pad_id).long()
|
128 |
+
|
129 |
+
# embeddings
|
130 |
+
x = self.token_embedding(ids) + \
|
131 |
+
self.type_embedding(torch.zeros_like(ids)) + \
|
132 |
+
self.pos_embedding(self.pad_id + torch.cumsum(mask, dim=1) * mask)
|
133 |
+
if self.post_norm:
|
134 |
+
x = self.norm(x)
|
135 |
+
x = self.dropout(x)
|
136 |
+
|
137 |
+
# blocks
|
138 |
+
mask = torch.where(
|
139 |
+
mask.view(b, 1, 1, s).gt(0), 0.0,
|
140 |
+
torch.finfo(x.dtype).min)
|
141 |
+
for block in self.blocks:
|
142 |
+
x = block(x, mask)
|
143 |
+
|
144 |
+
# output
|
145 |
+
if not self.post_norm:
|
146 |
+
x = self.norm(x)
|
147 |
+
return x
|
148 |
+
|
149 |
+
|
150 |
+
def xlm_roberta_large(pretrained=False,
|
151 |
+
return_tokenizer=False,
|
152 |
+
device='cpu',
|
153 |
+
**kwargs):
|
154 |
+
"""
|
155 |
+
XLMRobertaLarge adapted from Huggingface.
|
156 |
+
"""
|
157 |
+
# params
|
158 |
+
cfg = dict(
|
159 |
+
vocab_size=250002,
|
160 |
+
max_seq_len=514,
|
161 |
+
type_size=1,
|
162 |
+
pad_id=1,
|
163 |
+
dim=1024,
|
164 |
+
num_heads=16,
|
165 |
+
num_layers=24,
|
166 |
+
post_norm=True,
|
167 |
+
dropout=0.1,
|
168 |
+
eps=1e-5)
|
169 |
+
cfg.update(**kwargs)
|
170 |
+
|
171 |
+
# init model
|
172 |
+
if pretrained:
|
173 |
+
from sora import DOWNLOAD_TO_CACHE
|
174 |
+
|
175 |
+
# init a meta model
|
176 |
+
with torch.device('meta'):
|
177 |
+
model = XLMRoberta(**cfg)
|
178 |
+
|
179 |
+
# load checkpoint
|
180 |
+
model.load_state_dict(
|
181 |
+
torch.load(
|
182 |
+
DOWNLOAD_TO_CACHE('models/xlm_roberta/xlm_roberta_large.pth'),
|
183 |
+
map_location=device),
|
184 |
+
assign=True)
|
185 |
+
else:
|
186 |
+
# init a model on device
|
187 |
+
with torch.device(device):
|
188 |
+
model = XLMRoberta(**cfg)
|
189 |
+
|
190 |
+
# init tokenizer
|
191 |
+
if return_tokenizer:
|
192 |
+
from sora.data import HuggingfaceTokenizer
|
193 |
+
tokenizer = HuggingfaceTokenizer(
|
194 |
+
name='xlm-roberta-large',
|
195 |
+
seq_len=model.text_len,
|
196 |
+
clean='whitespace')
|
197 |
+
return model, tokenizer
|
198 |
+
else:
|
199 |
+
return model
|
200 |
+
|
201 |
+
|
202 |
+
|
203 |
+
def pos_interpolate(pos, seq_len):
|
204 |
+
if pos.size(1) == seq_len:
|
205 |
+
return pos
|
206 |
+
else:
|
207 |
+
src_grid = int(math.sqrt(pos.size(1)))
|
208 |
+
tar_grid = int(math.sqrt(seq_len))
|
209 |
+
n = pos.size(1) - src_grid * src_grid
|
210 |
+
return torch.cat([
|
211 |
+
pos[:, :n],
|
212 |
+
F.interpolate(
|
213 |
+
pos[:, n:].float().reshape(1, src_grid, src_grid, -1).permute(
|
214 |
+
0, 3, 1, 2),
|
215 |
+
size=(tar_grid, tar_grid),
|
216 |
+
mode='bicubic',
|
217 |
+
align_corners=False).flatten(2).transpose(1, 2)
|
218 |
+
],
|
219 |
+
dim=1)
|
220 |
+
|
221 |
+
|
222 |
+
class QuickGELU(nn.Module):
|
223 |
+
|
224 |
+
def forward(self, x):
|
225 |
+
return x * torch.sigmoid(1.702 * x)
|
226 |
+
|
227 |
+
|
228 |
+
class LayerNorm(nn.LayerNorm):
|
229 |
+
|
230 |
+
def forward(self, x):
|
231 |
+
return super().forward(x.float()).type_as(x)
|
232 |
+
|
233 |
+
|
234 |
+
class SelfAttention(nn.Module):
|
235 |
+
|
236 |
+
def __init__(self,
|
237 |
+
dim,
|
238 |
+
num_heads,
|
239 |
+
causal=False,
|
240 |
+
attn_dropout=0.0,
|
241 |
+
proj_dropout=0.0):
|
242 |
+
assert dim % num_heads == 0
|
243 |
+
super().__init__()
|
244 |
+
self.dim = dim
|
245 |
+
self.num_heads = num_heads
|
246 |
+
self.head_dim = dim // num_heads
|
247 |
+
self.causal = causal
|
248 |
+
self.attn_dropout = attn_dropout
|
249 |
+
self.proj_dropout = proj_dropout
|
250 |
+
|
251 |
+
# layers
|
252 |
+
self.to_qkv = nn.Linear(dim, dim * 3)
|
253 |
+
self.proj = nn.Linear(dim, dim)
|
254 |
+
|
255 |
+
def forward(self, x):
|
256 |
+
"""
|
257 |
+
x: [B, L, C].
|
258 |
+
"""
|
259 |
+
b, s, c, n, d = *x.size(), self.num_heads, self.head_dim
|
260 |
+
|
261 |
+
# compute query, key, value
|
262 |
+
q, k, v = self.to_qkv(x).view(b, s, 3, n, d).unbind(2)
|
263 |
+
|
264 |
+
# compute attention
|
265 |
+
p = self.attn_dropout if self.training else 0.0
|
266 |
+
x = flash_attention(q, k, v, dropout_p=p, causal=self.causal, version=2)
|
267 |
+
x = x.reshape(b, s, c)
|
268 |
+
|
269 |
+
# output
|
270 |
+
x = self.proj(x)
|
271 |
+
x = F.dropout(x, self.proj_dropout, self.training)
|
272 |
+
return x
|
273 |
+
|
274 |
+
|
275 |
+
class SwiGLU(nn.Module):
|
276 |
+
|
277 |
+
def __init__(self, dim, mid_dim):
|
278 |
+
super().__init__()
|
279 |
+
self.dim = dim
|
280 |
+
self.mid_dim = mid_dim
|
281 |
+
|
282 |
+
# layers
|
283 |
+
self.fc1 = nn.Linear(dim, mid_dim)
|
284 |
+
self.fc2 = nn.Linear(dim, mid_dim)
|
285 |
+
self.fc3 = nn.Linear(mid_dim, dim)
|
286 |
+
|
287 |
+
def forward(self, x):
|
288 |
+
x = F.silu(self.fc1(x)) * self.fc2(x)
|
289 |
+
x = self.fc3(x)
|
290 |
+
return x
|
291 |
+
|
292 |
+
|
293 |
+
class AttentionBlock(nn.Module):
|
294 |
+
|
295 |
+
def __init__(self,
|
296 |
+
dim,
|
297 |
+
mlp_ratio,
|
298 |
+
num_heads,
|
299 |
+
post_norm=False,
|
300 |
+
causal=False,
|
301 |
+
activation='quick_gelu',
|
302 |
+
attn_dropout=0.0,
|
303 |
+
proj_dropout=0.0,
|
304 |
+
norm_eps=1e-5):
|
305 |
+
assert activation in ['quick_gelu', 'gelu', 'swi_glu']
|
306 |
+
super().__init__()
|
307 |
+
self.dim = dim
|
308 |
+
self.mlp_ratio = mlp_ratio
|
309 |
+
self.num_heads = num_heads
|
310 |
+
self.post_norm = post_norm
|
311 |
+
self.causal = causal
|
312 |
+
self.norm_eps = norm_eps
|
313 |
+
|
314 |
+
# layers
|
315 |
+
self.norm1 = LayerNorm(dim, eps=norm_eps)
|
316 |
+
self.attn = SelfAttention(dim, num_heads, causal, attn_dropout,
|
317 |
+
proj_dropout)
|
318 |
+
self.norm2 = LayerNorm(dim, eps=norm_eps)
|
319 |
+
if activation == 'swi_glu':
|
320 |
+
self.mlp = SwiGLU(dim, int(dim * mlp_ratio))
|
321 |
+
else:
|
322 |
+
self.mlp = nn.Sequential(
|
323 |
+
nn.Linear(dim, int(dim * mlp_ratio)),
|
324 |
+
QuickGELU() if activation == 'quick_gelu' else nn.GELU(),
|
325 |
+
nn.Linear(int(dim * mlp_ratio), dim), nn.Dropout(proj_dropout))
|
326 |
+
|
327 |
+
def forward(self, x):
|
328 |
+
if self.post_norm:
|
329 |
+
x = x + self.norm1(self.attn(x))
|
330 |
+
x = x + self.norm2(self.mlp(x))
|
331 |
+
else:
|
332 |
+
x = x + self.attn(self.norm1(x))
|
333 |
+
x = x + self.mlp(self.norm2(x))
|
334 |
+
return x
|
335 |
+
|
336 |
+
|
337 |
+
class AttentionPool(nn.Module):
|
338 |
+
|
339 |
+
def __init__(self,
|
340 |
+
dim,
|
341 |
+
mlp_ratio,
|
342 |
+
num_heads,
|
343 |
+
activation='gelu',
|
344 |
+
proj_dropout=0.0,
|
345 |
+
norm_eps=1e-5):
|
346 |
+
assert dim % num_heads == 0
|
347 |
+
super().__init__()
|
348 |
+
self.dim = dim
|
349 |
+
self.mlp_ratio = mlp_ratio
|
350 |
+
self.num_heads = num_heads
|
351 |
+
self.head_dim = dim // num_heads
|
352 |
+
self.proj_dropout = proj_dropout
|
353 |
+
self.norm_eps = norm_eps
|
354 |
+
|
355 |
+
# layers
|
356 |
+
gain = 1.0 / math.sqrt(dim)
|
357 |
+
self.cls_embedding = nn.Parameter(gain * torch.randn(1, 1, dim))
|
358 |
+
self.to_q = nn.Linear(dim, dim)
|
359 |
+
self.to_kv = nn.Linear(dim, dim * 2)
|
360 |
+
self.proj = nn.Linear(dim, dim)
|
361 |
+
self.norm = LayerNorm(dim, eps=norm_eps)
|
362 |
+
self.mlp = nn.Sequential(
|
363 |
+
nn.Linear(dim, int(dim * mlp_ratio)),
|
364 |
+
QuickGELU() if activation == 'quick_gelu' else nn.GELU(),
|
365 |
+
nn.Linear(int(dim * mlp_ratio), dim), nn.Dropout(proj_dropout))
|
366 |
+
|
367 |
+
def forward(self, x):
|
368 |
+
"""
|
369 |
+
x: [B, L, C].
|
370 |
+
"""
|
371 |
+
b, s, c, n, d = *x.size(), self.num_heads, self.head_dim
|
372 |
+
|
373 |
+
# compute query, key, value
|
374 |
+
q = self.to_q(self.cls_embedding).view(1, 1, n, d).expand(b, -1, -1, -1)
|
375 |
+
k, v = self.to_kv(x).view(b, s, 2, n, d).unbind(2)
|
376 |
+
|
377 |
+
# compute attention
|
378 |
+
x = flash_attention(q, k, v, version=2)
|
379 |
+
x = x.reshape(b, 1, c)
|
380 |
+
|
381 |
+
# output
|
382 |
+
x = self.proj(x)
|
383 |
+
x = F.dropout(x, self.proj_dropout, self.training)
|
384 |
+
|
385 |
+
# mlp
|
386 |
+
x = x + self.mlp(self.norm(x))
|
387 |
+
return x[:, 0]
|
388 |
+
|
389 |
+
|
390 |
+
class VisionTransformer(nn.Module):
|
391 |
+
|
392 |
+
def __init__(self,
|
393 |
+
image_size=224,
|
394 |
+
patch_size=16,
|
395 |
+
dim=768,
|
396 |
+
mlp_ratio=4,
|
397 |
+
out_dim=512,
|
398 |
+
num_heads=12,
|
399 |
+
num_layers=12,
|
400 |
+
pool_type='token',
|
401 |
+
pre_norm=True,
|
402 |
+
post_norm=False,
|
403 |
+
activation='quick_gelu',
|
404 |
+
attn_dropout=0.0,
|
405 |
+
proj_dropout=0.0,
|
406 |
+
embedding_dropout=0.0,
|
407 |
+
norm_eps=1e-5):
|
408 |
+
if image_size % patch_size != 0:
|
409 |
+
print(
|
410 |
+
'[WARNING] image_size is not divisible by patch_size',
|
411 |
+
flush=True)
|
412 |
+
assert pool_type in ('token', 'token_fc', 'attn_pool')
|
413 |
+
out_dim = out_dim or dim
|
414 |
+
super().__init__()
|
415 |
+
self.image_size = image_size
|
416 |
+
self.patch_size = patch_size
|
417 |
+
self.num_patches = (image_size // patch_size)**2
|
418 |
+
self.dim = dim
|
419 |
+
self.mlp_ratio = mlp_ratio
|
420 |
+
self.out_dim = out_dim
|
421 |
+
self.num_heads = num_heads
|
422 |
+
self.num_layers = num_layers
|
423 |
+
self.pool_type = pool_type
|
424 |
+
self.post_norm = post_norm
|
425 |
+
self.norm_eps = norm_eps
|
426 |
+
|
427 |
+
# embeddings
|
428 |
+
gain = 1.0 / math.sqrt(dim)
|
429 |
+
self.patch_embedding = nn.Conv2d(
|
430 |
+
3,
|
431 |
+
dim,
|
432 |
+
kernel_size=patch_size,
|
433 |
+
stride=patch_size,
|
434 |
+
bias=not pre_norm)
|
435 |
+
if pool_type in ('token', 'token_fc'):
|
436 |
+
self.cls_embedding = nn.Parameter(gain * torch.randn(1, 1, dim))
|
437 |
+
self.pos_embedding = nn.Parameter(gain * torch.randn(
|
438 |
+
1, self.num_patches +
|
439 |
+
(1 if pool_type in ('token', 'token_fc') else 0), dim))
|
440 |
+
self.dropout = nn.Dropout(embedding_dropout)
|
441 |
+
|
442 |
+
# transformer
|
443 |
+
self.pre_norm = LayerNorm(dim, eps=norm_eps) if pre_norm else None
|
444 |
+
self.transformer = nn.Sequential(*[
|
445 |
+
AttentionBlock(dim, mlp_ratio, num_heads, post_norm, False,
|
446 |
+
activation, attn_dropout, proj_dropout, norm_eps)
|
447 |
+
for _ in range(num_layers)
|
448 |
+
])
|
449 |
+
self.post_norm = LayerNorm(dim, eps=norm_eps)
|
450 |
+
|
451 |
+
# head
|
452 |
+
if pool_type == 'token':
|
453 |
+
self.head = nn.Parameter(gain * torch.randn(dim, out_dim))
|
454 |
+
elif pool_type == 'token_fc':
|
455 |
+
self.head = nn.Linear(dim, out_dim)
|
456 |
+
elif pool_type == 'attn_pool':
|
457 |
+
self.head = AttentionPool(dim, mlp_ratio, num_heads, activation,
|
458 |
+
proj_dropout, norm_eps)
|
459 |
+
|
460 |
+
def forward(self, x, interpolation=False, use_31_block=False):
|
461 |
+
b = x.size(0)
|
462 |
+
|
463 |
+
# embeddings
|
464 |
+
x = self.patch_embedding(x).flatten(2).permute(0, 2, 1)
|
465 |
+
if self.pool_type in ('token', 'token_fc'):
|
466 |
+
x = torch.cat([self.cls_embedding.expand(b, -1, -1).to(dtype=x.dtype, device=x.device), x], dim=1)
|
467 |
+
if interpolation:
|
468 |
+
e = pos_interpolate(self.pos_embedding, x.size(1))
|
469 |
+
else:
|
470 |
+
e = self.pos_embedding
|
471 |
+
e = e.to(dtype=x.dtype, device=x.device)
|
472 |
+
x = self.dropout(x + e)
|
473 |
+
if self.pre_norm is not None:
|
474 |
+
x = self.pre_norm(x)
|
475 |
+
|
476 |
+
# transformer
|
477 |
+
if use_31_block:
|
478 |
+
x = self.transformer[:-1](x)
|
479 |
+
return x
|
480 |
+
else:
|
481 |
+
x = self.transformer(x)
|
482 |
+
return x
|
483 |
+
|
484 |
+
|
485 |
+
class CLIP(nn.Module):
|
486 |
+
|
487 |
+
def __init__(self,
|
488 |
+
embed_dim=512,
|
489 |
+
image_size=224,
|
490 |
+
patch_size=16,
|
491 |
+
vision_dim=768,
|
492 |
+
vision_mlp_ratio=4,
|
493 |
+
vision_heads=12,
|
494 |
+
vision_layers=12,
|
495 |
+
vision_pool='token',
|
496 |
+
vision_pre_norm=True,
|
497 |
+
vision_post_norm=False,
|
498 |
+
vocab_size=49408,
|
499 |
+
text_len=77,
|
500 |
+
text_dim=512,
|
501 |
+
text_mlp_ratio=4,
|
502 |
+
text_heads=8,
|
503 |
+
text_layers=12,
|
504 |
+
text_causal=True,
|
505 |
+
text_pool='argmax',
|
506 |
+
text_head_bias=False,
|
507 |
+
logit_bias=None,
|
508 |
+
activation='quick_gelu',
|
509 |
+
attn_dropout=0.0,
|
510 |
+
proj_dropout=0.0,
|
511 |
+
embedding_dropout=0.0,
|
512 |
+
norm_eps=1e-5):
|
513 |
+
super().__init__()
|
514 |
+
self.embed_dim = embed_dim
|
515 |
+
self.image_size = image_size
|
516 |
+
self.patch_size = patch_size
|
517 |
+
self.vision_dim = vision_dim
|
518 |
+
self.vision_mlp_ratio = vision_mlp_ratio
|
519 |
+
self.vision_heads = vision_heads
|
520 |
+
self.vision_layers = vision_layers
|
521 |
+
self.vision_pool = vision_pool
|
522 |
+
self.vision_pre_norm = vision_pre_norm
|
523 |
+
self.vision_post_norm = vision_post_norm
|
524 |
+
self.vocab_size = vocab_size
|
525 |
+
self.text_len = text_len
|
526 |
+
self.text_dim = text_dim
|
527 |
+
self.text_mlp_ratio = text_mlp_ratio
|
528 |
+
self.text_heads = text_heads
|
529 |
+
self.text_layers = text_layers
|
530 |
+
self.text_causal = text_causal
|
531 |
+
self.text_pool = text_pool
|
532 |
+
self.text_head_bias = text_head_bias
|
533 |
+
self.norm_eps = norm_eps
|
534 |
+
|
535 |
+
# models
|
536 |
+
self.visual = VisionTransformer(
|
537 |
+
image_size=image_size,
|
538 |
+
patch_size=patch_size,
|
539 |
+
dim=vision_dim,
|
540 |
+
mlp_ratio=vision_mlp_ratio,
|
541 |
+
out_dim=embed_dim,
|
542 |
+
num_heads=vision_heads,
|
543 |
+
num_layers=vision_layers,
|
544 |
+
pool_type=vision_pool,
|
545 |
+
pre_norm=vision_pre_norm,
|
546 |
+
post_norm=vision_post_norm,
|
547 |
+
activation=activation,
|
548 |
+
attn_dropout=attn_dropout,
|
549 |
+
proj_dropout=proj_dropout,
|
550 |
+
embedding_dropout=embedding_dropout,
|
551 |
+
norm_eps=norm_eps)
|
552 |
+
self.textual = TextTransformer(
|
553 |
+
vocab_size=vocab_size,
|
554 |
+
text_len=text_len,
|
555 |
+
dim=text_dim,
|
556 |
+
mlp_ratio=text_mlp_ratio,
|
557 |
+
out_dim=embed_dim,
|
558 |
+
num_heads=text_heads,
|
559 |
+
num_layers=text_layers,
|
560 |
+
causal=text_causal,
|
561 |
+
pool_type=text_pool,
|
562 |
+
head_bias=text_head_bias,
|
563 |
+
activation=activation,
|
564 |
+
attn_dropout=attn_dropout,
|
565 |
+
proj_dropout=proj_dropout,
|
566 |
+
embedding_dropout=embedding_dropout,
|
567 |
+
norm_eps=norm_eps)
|
568 |
+
self.log_scale = nn.Parameter(math.log(1 / 0.07) * torch.ones([]))
|
569 |
+
if logit_bias is not None:
|
570 |
+
self.logit_bias = nn.Parameter(logit_bias * torch.ones([]))
|
571 |
+
|
572 |
+
# initialize weights
|
573 |
+
self.init_weights()
|
574 |
+
|
575 |
+
def forward(self, imgs, txt_ids):
|
576 |
+
"""
|
577 |
+
imgs: [B, 3, H, W] of torch.float32.
|
578 |
+
- mean: [0.48145466, 0.4578275, 0.40821073]
|
579 |
+
- std: [0.26862954, 0.26130258, 0.27577711]
|
580 |
+
txt_ids: [B, L] of torch.long. Encoded by data.CLIPTokenizer.
|
581 |
+
"""
|
582 |
+
xi = self.visual(imgs)
|
583 |
+
xt = self.textual(txt_ids)
|
584 |
+
return xi, xt
|
585 |
+
|
586 |
+
def init_weights(self):
|
587 |
+
# embeddings
|
588 |
+
nn.init.normal_(self.textual.token_embedding.weight, std=0.02)
|
589 |
+
nn.init.normal_(self.visual.patch_embedding.weight, std=0.1)
|
590 |
+
|
591 |
+
# attentions
|
592 |
+
for modality in ['visual', 'textual']:
|
593 |
+
dim = self.vision_dim if modality == 'visual' else self.text_dim
|
594 |
+
transformer = getattr(self, modality).transformer
|
595 |
+
proj_gain = (1.0 / math.sqrt(dim)) * (
|
596 |
+
1.0 / math.sqrt(2 * len(transformer)))
|
597 |
+
attn_gain = 1.0 / math.sqrt(dim)
|
598 |
+
mlp_gain = 1.0 / math.sqrt(2.0 * dim)
|
599 |
+
for block in transformer:
|
600 |
+
nn.init.normal_(block.attn.to_qkv.weight, std=attn_gain)
|
601 |
+
nn.init.normal_(block.attn.proj.weight, std=proj_gain)
|
602 |
+
nn.init.normal_(block.mlp[0].weight, std=mlp_gain)
|
603 |
+
nn.init.normal_(block.mlp[2].weight, std=proj_gain)
|
604 |
+
|
605 |
+
def param_groups(self):
|
606 |
+
groups = [{
|
607 |
+
'params': [
|
608 |
+
p for n, p in self.named_parameters()
|
609 |
+
if 'norm' in n or n.endswith('bias')
|
610 |
+
],
|
611 |
+
'weight_decay': 0.0
|
612 |
+
}, {
|
613 |
+
'params': [
|
614 |
+
p for n, p in self.named_parameters()
|
615 |
+
if not ('norm' in n or n.endswith('bias'))
|
616 |
+
]
|
617 |
+
}]
|
618 |
+
return groups
|
619 |
+
|
620 |
+
|
621 |
+
class XLMRobertaWithHead(XLMRoberta):
|
622 |
+
|
623 |
+
def __init__(self, **kwargs):
|
624 |
+
self.out_dim = kwargs.pop('out_dim')
|
625 |
+
super().__init__(**kwargs)
|
626 |
+
|
627 |
+
# head
|
628 |
+
mid_dim = (self.dim + self.out_dim) // 2
|
629 |
+
self.head = nn.Sequential(
|
630 |
+
nn.Linear(self.dim, mid_dim, bias=False), nn.GELU(),
|
631 |
+
nn.Linear(mid_dim, self.out_dim, bias=False))
|
632 |
+
|
633 |
+
def forward(self, ids):
|
634 |
+
# xlm-roberta
|
635 |
+
x = super().forward(ids)
|
636 |
+
|
637 |
+
# average pooling
|
638 |
+
mask = ids.ne(self.pad_id).unsqueeze(-1).to(x)
|
639 |
+
x = (x * mask).sum(dim=1) / mask.sum(dim=1)
|
640 |
+
|
641 |
+
# head
|
642 |
+
x = self.head(x)
|
643 |
+
return x
|
644 |
+
|
645 |
+
|
646 |
+
class XLMRobertaCLIP(nn.Module):
|
647 |
+
|
648 |
+
def __init__(self,
|
649 |
+
embed_dim=1024,
|
650 |
+
image_size=224,
|
651 |
+
patch_size=14,
|
652 |
+
vision_dim=1280,
|
653 |
+
vision_mlp_ratio=4,
|
654 |
+
vision_heads=16,
|
655 |
+
vision_layers=32,
|
656 |
+
vision_pool='token',
|
657 |
+
vision_pre_norm=True,
|
658 |
+
vision_post_norm=False,
|
659 |
+
activation='gelu',
|
660 |
+
vocab_size=250002,
|
661 |
+
max_text_len=514,
|
662 |
+
type_size=1,
|
663 |
+
pad_id=1,
|
664 |
+
text_dim=1024,
|
665 |
+
text_heads=16,
|
666 |
+
text_layers=24,
|
667 |
+
text_post_norm=True,
|
668 |
+
text_dropout=0.1,
|
669 |
+
attn_dropout=0.0,
|
670 |
+
proj_dropout=0.0,
|
671 |
+
embedding_dropout=0.0,
|
672 |
+
norm_eps=1e-5):
|
673 |
+
super().__init__()
|
674 |
+
self.embed_dim = embed_dim
|
675 |
+
self.image_size = image_size
|
676 |
+
self.patch_size = patch_size
|
677 |
+
self.vision_dim = vision_dim
|
678 |
+
self.vision_mlp_ratio = vision_mlp_ratio
|
679 |
+
self.vision_heads = vision_heads
|
680 |
+
self.vision_layers = vision_layers
|
681 |
+
self.vision_pre_norm = vision_pre_norm
|
682 |
+
self.vision_post_norm = vision_post_norm
|
683 |
+
self.activation = activation
|
684 |
+
self.vocab_size = vocab_size
|
685 |
+
self.max_text_len = max_text_len
|
686 |
+
self.type_size = type_size
|
687 |
+
self.pad_id = pad_id
|
688 |
+
self.text_dim = text_dim
|
689 |
+
self.text_heads = text_heads
|
690 |
+
self.text_layers = text_layers
|
691 |
+
self.text_post_norm = text_post_norm
|
692 |
+
self.norm_eps = norm_eps
|
693 |
+
|
694 |
+
# models
|
695 |
+
self.visual = VisionTransformer(
|
696 |
+
image_size=image_size,
|
697 |
+
patch_size=patch_size,
|
698 |
+
dim=vision_dim,
|
699 |
+
mlp_ratio=vision_mlp_ratio,
|
700 |
+
out_dim=embed_dim,
|
701 |
+
num_heads=vision_heads,
|
702 |
+
num_layers=vision_layers,
|
703 |
+
pool_type=vision_pool,
|
704 |
+
pre_norm=vision_pre_norm,
|
705 |
+
post_norm=vision_post_norm,
|
706 |
+
activation=activation,
|
707 |
+
attn_dropout=attn_dropout,
|
708 |
+
proj_dropout=proj_dropout,
|
709 |
+
embedding_dropout=embedding_dropout,
|
710 |
+
norm_eps=norm_eps)
|
711 |
+
self.textual = None
|
712 |
+
self.log_scale = nn.Parameter(math.log(1 / 0.07) * torch.ones([]))
|
713 |
+
|
714 |
+
def forward(self, imgs, txt_ids):
|
715 |
+
"""
|
716 |
+
imgs: [B, 3, H, W] of torch.float32.
|
717 |
+
- mean: [0.48145466, 0.4578275, 0.40821073]
|
718 |
+
- std: [0.26862954, 0.26130258, 0.27577711]
|
719 |
+
txt_ids: [B, L] of torch.long.
|
720 |
+
Encoded by data.CLIPTokenizer.
|
721 |
+
"""
|
722 |
+
xi = self.visual(imgs)
|
723 |
+
xt = self.textual(txt_ids)
|
724 |
+
return xi, xt
|
725 |
+
|
726 |
+
def param_groups(self):
|
727 |
+
groups = [{
|
728 |
+
'params': [
|
729 |
+
p for n, p in self.named_parameters()
|
730 |
+
if 'norm' in n or n.endswith('bias')
|
731 |
+
],
|
732 |
+
'weight_decay': 0.0
|
733 |
+
}, {
|
734 |
+
'params': [
|
735 |
+
p for n, p in self.named_parameters()
|
736 |
+
if not ('norm' in n or n.endswith('bias'))
|
737 |
+
]
|
738 |
+
}]
|
739 |
+
return groups
|
740 |
+
|
741 |
+
|
742 |
+
def _clip(pretrained=False,
|
743 |
+
pretrained_name=None,
|
744 |
+
model_cls=CLIP,
|
745 |
+
return_transforms=False,
|
746 |
+
return_tokenizer=False,
|
747 |
+
tokenizer_padding='eos',
|
748 |
+
dtype=torch.float32,
|
749 |
+
device='cpu',
|
750 |
+
**kwargs):
|
751 |
+
# init model
|
752 |
+
if pretrained and pretrained_name:
|
753 |
+
from sora import BUCKET, DOWNLOAD_TO_CACHE
|
754 |
+
|
755 |
+
# init a meta model
|
756 |
+
with torch.device('meta'):
|
757 |
+
model = model_cls(**kwargs)
|
758 |
+
|
759 |
+
# checkpoint path
|
760 |
+
checkpoint = f'models/clip/{pretrained_name}'
|
761 |
+
if dtype in (torch.float16, torch.bfloat16):
|
762 |
+
suffix = '-' + {
|
763 |
+
torch.float16: 'fp16',
|
764 |
+
torch.bfloat16: 'bf16'
|
765 |
+
}[dtype]
|
766 |
+
if object_exists(BUCKET, f'{checkpoint}{suffix}.pth'):
|
767 |
+
checkpoint = f'{checkpoint}{suffix}'
|
768 |
+
checkpoint += '.pth'
|
769 |
+
|
770 |
+
# load
|
771 |
+
model.load_state_dict(
|
772 |
+
torch.load(DOWNLOAD_TO_CACHE(checkpoint), map_location=device),
|
773 |
+
assign=True,
|
774 |
+
strict=False)
|
775 |
+
else:
|
776 |
+
# init a model on device
|
777 |
+
with torch.device(device):
|
778 |
+
model = model_cls(**kwargs)
|
779 |
+
|
780 |
+
# set device
|
781 |
+
output = (model,)
|
782 |
+
|
783 |
+
# init transforms
|
784 |
+
if return_transforms:
|
785 |
+
# mean and std
|
786 |
+
if 'siglip' in pretrained_name.lower():
|
787 |
+
mean, std = [0.5, 0.5, 0.5], [0.5, 0.5, 0.5]
|
788 |
+
else:
|
789 |
+
mean = [0.48145466, 0.4578275, 0.40821073]
|
790 |
+
std = [0.26862954, 0.26130258, 0.27577711]
|
791 |
+
|
792 |
+
# transforms
|
793 |
+
transforms = T.Compose([
|
794 |
+
T.Resize((model.image_size, model.image_size),
|
795 |
+
interpolation=T.InterpolationMode.BICUBIC),
|
796 |
+
T.ToTensor(),
|
797 |
+
T.Normalize(mean=mean, std=std)
|
798 |
+
])
|
799 |
+
output += (transforms,)
|
800 |
+
|
801 |
+
# init tokenizer
|
802 |
+
if return_tokenizer:
|
803 |
+
from sora import data
|
804 |
+
if 'siglip' in pretrained_name.lower():
|
805 |
+
tokenizer = data.HuggingfaceTokenizer(
|
806 |
+
name=f'timm/{pretrained_name}',
|
807 |
+
seq_len=model.text_len,
|
808 |
+
clean='canonicalize')
|
809 |
+
elif 'xlm' in pretrained_name.lower():
|
810 |
+
tokenizer = data.HuggingfaceTokenizer(
|
811 |
+
name='xlm-roberta-large',
|
812 |
+
seq_len=model.max_text_len - 2,
|
813 |
+
clean='whitespace')
|
814 |
+
elif 'mba' in pretrained_name.lower():
|
815 |
+
tokenizer = data.HuggingfaceTokenizer(
|
816 |
+
name='facebook/xlm-roberta-xl',
|
817 |
+
seq_len=model.max_text_len - 2,
|
818 |
+
clean='whitespace')
|
819 |
+
else:
|
820 |
+
tokenizer = data.CLIPTokenizer(
|
821 |
+
seq_len=model.text_len, padding=tokenizer_padding)
|
822 |
+
output += (tokenizer,)
|
823 |
+
return output[0] if len(output) == 1 else output
|
824 |
+
|
825 |
+
|
826 |
+
def clip_xlm_roberta_vit_h_14(
|
827 |
+
pretrained=False,
|
828 |
+
pretrained_name='open-clip-xlm-roberta-large-vit-huge-14',
|
829 |
+
**kwargs):
|
830 |
+
cfg = dict(
|
831 |
+
embed_dim=1024,
|
832 |
+
image_size=224,
|
833 |
+
patch_size=14,
|
834 |
+
vision_dim=1280,
|
835 |
+
vision_mlp_ratio=4,
|
836 |
+
vision_heads=16,
|
837 |
+
vision_layers=32,
|
838 |
+
vision_pool='token',
|
839 |
+
activation='gelu',
|
840 |
+
vocab_size=250002,
|
841 |
+
max_text_len=514,
|
842 |
+
type_size=1,
|
843 |
+
pad_id=1,
|
844 |
+
text_dim=1024,
|
845 |
+
text_heads=16,
|
846 |
+
text_layers=24,
|
847 |
+
text_post_norm=True,
|
848 |
+
text_dropout=0.1,
|
849 |
+
attn_dropout=0.0,
|
850 |
+
proj_dropout=0.0,
|
851 |
+
embedding_dropout=0.0)
|
852 |
+
cfg.update(**kwargs)
|
853 |
+
return _clip(pretrained, pretrained_name, XLMRobertaCLIP, **cfg)
|
854 |
+
|
855 |
+
|
856 |
+
class WanImageEncoder(torch.nn.Module):
|
857 |
+
|
858 |
+
def __init__(self):
|
859 |
+
super().__init__()
|
860 |
+
# init model
|
861 |
+
self.model, self.transforms = clip_xlm_roberta_vit_h_14(
|
862 |
+
pretrained=False,
|
863 |
+
return_transforms=True,
|
864 |
+
return_tokenizer=False,
|
865 |
+
dtype=torch.float32,
|
866 |
+
device="cpu")
|
867 |
+
|
868 |
+
def encode_image(self, videos):
|
869 |
+
# preprocess
|
870 |
+
size = (self.model.image_size,) * 2
|
871 |
+
videos = torch.cat([
|
872 |
+
F.interpolate(
|
873 |
+
u,
|
874 |
+
size=size,
|
875 |
+
mode='bicubic',
|
876 |
+
align_corners=False) for u in videos
|
877 |
+
])
|
878 |
+
videos = self.transforms.transforms[-1](videos.mul_(0.5).add_(0.5))
|
879 |
+
|
880 |
+
# forward
|
881 |
+
out = self.model.visual(videos, use_31_block=True)
|
882 |
+
return out
|
883 |
+
|
884 |
+
@staticmethod
|
885 |
+
def state_dict_converter():
|
886 |
+
return WanImageEncoderStateDictConverter()
|
887 |
+
|
888 |
+
|
889 |
+
class WanImageEncoderStateDictConverter:
|
890 |
+
def __init__(self):
|
891 |
+
pass
|
892 |
+
|
893 |
+
def from_diffusers(self, state_dict):
|
894 |
+
return state_dict
|
895 |
+
|
896 |
+
def from_civitai(self, state_dict):
|
897 |
+
state_dict_ = {}
|
898 |
+
for name, param in state_dict.items():
|
899 |
+
if name.startswith("textual."):
|
900 |
+
continue
|
901 |
+
name = "model." + name
|
902 |
+
state_dict_[name] = param
|
903 |
+
return state_dict_
|
904 |
+
|
diffsynth/models/wan_video_text_encoder.py
ADDED
@@ -0,0 +1,269 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import torch.nn.functional as F
|
6 |
+
|
7 |
+
|
8 |
+
def fp16_clamp(x):
|
9 |
+
if x.dtype == torch.float16 and torch.isinf(x).any():
|
10 |
+
clamp = torch.finfo(x.dtype).max - 1000
|
11 |
+
x = torch.clamp(x, min=-clamp, max=clamp)
|
12 |
+
return x
|
13 |
+
|
14 |
+
|
15 |
+
class GELU(nn.Module):
|
16 |
+
|
17 |
+
def forward(self, x):
|
18 |
+
return 0.5 * x * (1.0 + torch.tanh(
|
19 |
+
math.sqrt(2.0 / math.pi) * (x + 0.044715 * torch.pow(x, 3.0))))
|
20 |
+
|
21 |
+
|
22 |
+
class T5LayerNorm(nn.Module):
|
23 |
+
|
24 |
+
def __init__(self, dim, eps=1e-6):
|
25 |
+
super(T5LayerNorm, self).__init__()
|
26 |
+
self.dim = dim
|
27 |
+
self.eps = eps
|
28 |
+
self.weight = nn.Parameter(torch.ones(dim))
|
29 |
+
|
30 |
+
def forward(self, x):
|
31 |
+
x = x * torch.rsqrt(x.float().pow(2).mean(dim=-1, keepdim=True) +
|
32 |
+
self.eps)
|
33 |
+
if self.weight.dtype in [torch.float16, torch.bfloat16]:
|
34 |
+
x = x.type_as(self.weight)
|
35 |
+
return self.weight * x
|
36 |
+
|
37 |
+
|
38 |
+
class T5Attention(nn.Module):
|
39 |
+
|
40 |
+
def __init__(self, dim, dim_attn, num_heads, dropout=0.1):
|
41 |
+
assert dim_attn % num_heads == 0
|
42 |
+
super(T5Attention, self).__init__()
|
43 |
+
self.dim = dim
|
44 |
+
self.dim_attn = dim_attn
|
45 |
+
self.num_heads = num_heads
|
46 |
+
self.head_dim = dim_attn // num_heads
|
47 |
+
|
48 |
+
# layers
|
49 |
+
self.q = nn.Linear(dim, dim_attn, bias=False)
|
50 |
+
self.k = nn.Linear(dim, dim_attn, bias=False)
|
51 |
+
self.v = nn.Linear(dim, dim_attn, bias=False)
|
52 |
+
self.o = nn.Linear(dim_attn, dim, bias=False)
|
53 |
+
self.dropout = nn.Dropout(dropout)
|
54 |
+
|
55 |
+
def forward(self, x, context=None, mask=None, pos_bias=None):
|
56 |
+
"""
|
57 |
+
x: [B, L1, C].
|
58 |
+
context: [B, L2, C] or None.
|
59 |
+
mask: [B, L2] or [B, L1, L2] or None.
|
60 |
+
"""
|
61 |
+
# check inputs
|
62 |
+
context = x if context is None else context
|
63 |
+
b, n, c = x.size(0), self.num_heads, self.head_dim
|
64 |
+
|
65 |
+
# compute query, key, value
|
66 |
+
q = self.q(x).view(b, -1, n, c)
|
67 |
+
k = self.k(context).view(b, -1, n, c)
|
68 |
+
v = self.v(context).view(b, -1, n, c)
|
69 |
+
|
70 |
+
# attention bias
|
71 |
+
attn_bias = x.new_zeros(b, n, q.size(1), k.size(1))
|
72 |
+
if pos_bias is not None:
|
73 |
+
attn_bias += pos_bias
|
74 |
+
if mask is not None:
|
75 |
+
assert mask.ndim in [2, 3]
|
76 |
+
mask = mask.view(b, 1, 1,
|
77 |
+
-1) if mask.ndim == 2 else mask.unsqueeze(1)
|
78 |
+
attn_bias.masked_fill_(mask == 0, torch.finfo(x.dtype).min)
|
79 |
+
|
80 |
+
# compute attention (T5 does not use scaling)
|
81 |
+
attn = torch.einsum('binc,bjnc->bnij', q, k) + attn_bias
|
82 |
+
attn = F.softmax(attn.float(), dim=-1).type_as(attn)
|
83 |
+
x = torch.einsum('bnij,bjnc->binc', attn, v)
|
84 |
+
|
85 |
+
# output
|
86 |
+
x = x.reshape(b, -1, n * c)
|
87 |
+
x = self.o(x)
|
88 |
+
x = self.dropout(x)
|
89 |
+
return x
|
90 |
+
|
91 |
+
|
92 |
+
class T5FeedForward(nn.Module):
|
93 |
+
|
94 |
+
def __init__(self, dim, dim_ffn, dropout=0.1):
|
95 |
+
super(T5FeedForward, self).__init__()
|
96 |
+
self.dim = dim
|
97 |
+
self.dim_ffn = dim_ffn
|
98 |
+
|
99 |
+
# layers
|
100 |
+
self.gate = nn.Sequential(nn.Linear(dim, dim_ffn, bias=False), GELU())
|
101 |
+
self.fc1 = nn.Linear(dim, dim_ffn, bias=False)
|
102 |
+
self.fc2 = nn.Linear(dim_ffn, dim, bias=False)
|
103 |
+
self.dropout = nn.Dropout(dropout)
|
104 |
+
|
105 |
+
def forward(self, x):
|
106 |
+
x = self.fc1(x) * self.gate(x)
|
107 |
+
x = self.dropout(x)
|
108 |
+
x = self.fc2(x)
|
109 |
+
x = self.dropout(x)
|
110 |
+
return x
|
111 |
+
|
112 |
+
|
113 |
+
class T5SelfAttention(nn.Module):
|
114 |
+
|
115 |
+
def __init__(self,
|
116 |
+
dim,
|
117 |
+
dim_attn,
|
118 |
+
dim_ffn,
|
119 |
+
num_heads,
|
120 |
+
num_buckets,
|
121 |
+
shared_pos=True,
|
122 |
+
dropout=0.1):
|
123 |
+
super(T5SelfAttention, self).__init__()
|
124 |
+
self.dim = dim
|
125 |
+
self.dim_attn = dim_attn
|
126 |
+
self.dim_ffn = dim_ffn
|
127 |
+
self.num_heads = num_heads
|
128 |
+
self.num_buckets = num_buckets
|
129 |
+
self.shared_pos = shared_pos
|
130 |
+
|
131 |
+
# layers
|
132 |
+
self.norm1 = T5LayerNorm(dim)
|
133 |
+
self.attn = T5Attention(dim, dim_attn, num_heads, dropout)
|
134 |
+
self.norm2 = T5LayerNorm(dim)
|
135 |
+
self.ffn = T5FeedForward(dim, dim_ffn, dropout)
|
136 |
+
self.pos_embedding = None if shared_pos else T5RelativeEmbedding(
|
137 |
+
num_buckets, num_heads, bidirectional=True)
|
138 |
+
|
139 |
+
def forward(self, x, mask=None, pos_bias=None):
|
140 |
+
e = pos_bias if self.shared_pos else self.pos_embedding(
|
141 |
+
x.size(1), x.size(1))
|
142 |
+
x = fp16_clamp(x + self.attn(self.norm1(x), mask=mask, pos_bias=e))
|
143 |
+
x = fp16_clamp(x + self.ffn(self.norm2(x)))
|
144 |
+
return x
|
145 |
+
|
146 |
+
|
147 |
+
class T5RelativeEmbedding(nn.Module):
|
148 |
+
|
149 |
+
def __init__(self, num_buckets, num_heads, bidirectional, max_dist=128):
|
150 |
+
super(T5RelativeEmbedding, self).__init__()
|
151 |
+
self.num_buckets = num_buckets
|
152 |
+
self.num_heads = num_heads
|
153 |
+
self.bidirectional = bidirectional
|
154 |
+
self.max_dist = max_dist
|
155 |
+
|
156 |
+
# layers
|
157 |
+
self.embedding = nn.Embedding(num_buckets, num_heads)
|
158 |
+
|
159 |
+
def forward(self, lq, lk):
|
160 |
+
device = self.embedding.weight.device
|
161 |
+
# rel_pos = torch.arange(lk).unsqueeze(0).to(device) - \
|
162 |
+
# torch.arange(lq).unsqueeze(1).to(device)
|
163 |
+
rel_pos = torch.arange(lk, device=device).unsqueeze(0) - \
|
164 |
+
torch.arange(lq, device=device).unsqueeze(1)
|
165 |
+
rel_pos = self._relative_position_bucket(rel_pos)
|
166 |
+
rel_pos_embeds = self.embedding(rel_pos)
|
167 |
+
rel_pos_embeds = rel_pos_embeds.permute(2, 0, 1).unsqueeze(
|
168 |
+
0) # [1, N, Lq, Lk]
|
169 |
+
return rel_pos_embeds.contiguous()
|
170 |
+
|
171 |
+
def _relative_position_bucket(self, rel_pos):
|
172 |
+
# preprocess
|
173 |
+
if self.bidirectional:
|
174 |
+
num_buckets = self.num_buckets // 2
|
175 |
+
rel_buckets = (rel_pos > 0).long() * num_buckets
|
176 |
+
rel_pos = torch.abs(rel_pos)
|
177 |
+
else:
|
178 |
+
num_buckets = self.num_buckets
|
179 |
+
rel_buckets = 0
|
180 |
+
rel_pos = -torch.min(rel_pos, torch.zeros_like(rel_pos))
|
181 |
+
|
182 |
+
# embeddings for small and large positions
|
183 |
+
max_exact = num_buckets // 2
|
184 |
+
rel_pos_large = max_exact + (torch.log(rel_pos.float() / max_exact) /
|
185 |
+
math.log(self.max_dist / max_exact) *
|
186 |
+
(num_buckets - max_exact)).long()
|
187 |
+
rel_pos_large = torch.min(
|
188 |
+
rel_pos_large, torch.full_like(rel_pos_large, num_buckets - 1))
|
189 |
+
rel_buckets += torch.where(rel_pos < max_exact, rel_pos, rel_pos_large)
|
190 |
+
return rel_buckets
|
191 |
+
|
192 |
+
def init_weights(m):
|
193 |
+
if isinstance(m, T5LayerNorm):
|
194 |
+
nn.init.ones_(m.weight)
|
195 |
+
elif isinstance(m, T5FeedForward):
|
196 |
+
nn.init.normal_(m.gate[0].weight, std=m.dim**-0.5)
|
197 |
+
nn.init.normal_(m.fc1.weight, std=m.dim**-0.5)
|
198 |
+
nn.init.normal_(m.fc2.weight, std=m.dim_ffn**-0.5)
|
199 |
+
elif isinstance(m, T5Attention):
|
200 |
+
nn.init.normal_(m.q.weight, std=(m.dim * m.dim_attn)**-0.5)
|
201 |
+
nn.init.normal_(m.k.weight, std=m.dim**-0.5)
|
202 |
+
nn.init.normal_(m.v.weight, std=m.dim**-0.5)
|
203 |
+
nn.init.normal_(m.o.weight, std=(m.num_heads * m.dim_attn)**-0.5)
|
204 |
+
elif isinstance(m, T5RelativeEmbedding):
|
205 |
+
nn.init.normal_(
|
206 |
+
m.embedding.weight, std=(2 * m.num_buckets * m.num_heads)**-0.5)
|
207 |
+
|
208 |
+
|
209 |
+
class WanTextEncoder(torch.nn.Module):
|
210 |
+
|
211 |
+
def __init__(self,
|
212 |
+
vocab=256384,
|
213 |
+
dim=4096,
|
214 |
+
dim_attn=4096,
|
215 |
+
dim_ffn=10240,
|
216 |
+
num_heads=64,
|
217 |
+
num_layers=24,
|
218 |
+
num_buckets=32,
|
219 |
+
shared_pos=False,
|
220 |
+
dropout=0.1):
|
221 |
+
super(WanTextEncoder, self).__init__()
|
222 |
+
self.dim = dim
|
223 |
+
self.dim_attn = dim_attn
|
224 |
+
self.dim_ffn = dim_ffn
|
225 |
+
self.num_heads = num_heads
|
226 |
+
self.num_layers = num_layers
|
227 |
+
self.num_buckets = num_buckets
|
228 |
+
self.shared_pos = shared_pos
|
229 |
+
|
230 |
+
# layers
|
231 |
+
self.token_embedding = vocab if isinstance(vocab, nn.Embedding) \
|
232 |
+
else nn.Embedding(vocab, dim)
|
233 |
+
self.pos_embedding = T5RelativeEmbedding(
|
234 |
+
num_buckets, num_heads, bidirectional=True) if shared_pos else None
|
235 |
+
self.dropout = nn.Dropout(dropout)
|
236 |
+
self.blocks = nn.ModuleList([
|
237 |
+
T5SelfAttention(dim, dim_attn, dim_ffn, num_heads, num_buckets,
|
238 |
+
shared_pos, dropout) for _ in range(num_layers)
|
239 |
+
])
|
240 |
+
self.norm = T5LayerNorm(dim)
|
241 |
+
|
242 |
+
# initialize weights
|
243 |
+
self.apply(init_weights)
|
244 |
+
|
245 |
+
def forward(self, ids, mask=None):
|
246 |
+
x = self.token_embedding(ids)
|
247 |
+
x = self.dropout(x)
|
248 |
+
e = self.pos_embedding(x.size(1),
|
249 |
+
x.size(1)) if self.shared_pos else None
|
250 |
+
for block in self.blocks:
|
251 |
+
x = block(x, mask, pos_bias=e)
|
252 |
+
x = self.norm(x)
|
253 |
+
x = self.dropout(x)
|
254 |
+
return x
|
255 |
+
|
256 |
+
@staticmethod
|
257 |
+
def state_dict_converter():
|
258 |
+
return WanTextEncoderStateDictConverter()
|
259 |
+
|
260 |
+
|
261 |
+
class WanTextEncoderStateDictConverter:
|
262 |
+
def __init__(self):
|
263 |
+
pass
|
264 |
+
|
265 |
+
def from_diffusers(self, state_dict):
|
266 |
+
return state_dict
|
267 |
+
|
268 |
+
def from_civitai(self, state_dict):
|
269 |
+
return state_dict
|
diffsynth/models/wan_video_vae.py
ADDED
@@ -0,0 +1,808 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from einops import rearrange, repeat
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import torch.nn.functional as F
|
6 |
+
from tqdm import tqdm
|
7 |
+
|
8 |
+
CACHE_T = 2
|
9 |
+
|
10 |
+
|
11 |
+
def check_is_instance(model, module_class):
|
12 |
+
if isinstance(model, module_class):
|
13 |
+
return True
|
14 |
+
if hasattr(model, "module") and isinstance(model.module, module_class):
|
15 |
+
return True
|
16 |
+
return False
|
17 |
+
|
18 |
+
|
19 |
+
def block_causal_mask(x, block_size):
|
20 |
+
# params
|
21 |
+
b, n, s, _, device = *x.size(), x.device
|
22 |
+
assert s % block_size == 0
|
23 |
+
num_blocks = s // block_size
|
24 |
+
|
25 |
+
# build mask
|
26 |
+
mask = torch.zeros(b, n, s, s, dtype=torch.bool, device=device)
|
27 |
+
for i in range(num_blocks):
|
28 |
+
mask[:, :,
|
29 |
+
i * block_size:(i + 1) * block_size, :(i + 1) * block_size] = 1
|
30 |
+
return mask
|
31 |
+
|
32 |
+
|
33 |
+
class CausalConv3d(nn.Conv3d):
|
34 |
+
"""
|
35 |
+
Causal 3d convolusion.
|
36 |
+
"""
|
37 |
+
|
38 |
+
def __init__(self, *args, **kwargs):
|
39 |
+
super().__init__(*args, **kwargs)
|
40 |
+
self._padding = (self.padding[2], self.padding[2], self.padding[1],
|
41 |
+
self.padding[1], 2 * self.padding[0], 0)
|
42 |
+
self.padding = (0, 0, 0)
|
43 |
+
|
44 |
+
def forward(self, x, cache_x=None):
|
45 |
+
padding = list(self._padding)
|
46 |
+
if cache_x is not None and self._padding[4] > 0:
|
47 |
+
cache_x = cache_x.to(x.device)
|
48 |
+
x = torch.cat([cache_x, x], dim=2)
|
49 |
+
padding[4] -= cache_x.shape[2]
|
50 |
+
x = F.pad(x, padding)
|
51 |
+
|
52 |
+
return super().forward(x)
|
53 |
+
|
54 |
+
|
55 |
+
class RMS_norm(nn.Module):
|
56 |
+
|
57 |
+
def __init__(self, dim, channel_first=True, images=True, bias=False):
|
58 |
+
super().__init__()
|
59 |
+
broadcastable_dims = (1, 1, 1) if not images else (1, 1)
|
60 |
+
shape = (dim, *broadcastable_dims) if channel_first else (dim,)
|
61 |
+
|
62 |
+
self.channel_first = channel_first
|
63 |
+
self.scale = dim**0.5
|
64 |
+
self.gamma = nn.Parameter(torch.ones(shape))
|
65 |
+
self.bias = nn.Parameter(torch.zeros(shape)) if bias else 0.
|
66 |
+
|
67 |
+
def forward(self, x):
|
68 |
+
return F.normalize(
|
69 |
+
x, dim=(1 if self.channel_first else
|
70 |
+
-1)) * self.scale * self.gamma + self.bias
|
71 |
+
|
72 |
+
|
73 |
+
class Upsample(nn.Upsample):
|
74 |
+
|
75 |
+
def forward(self, x):
|
76 |
+
"""
|
77 |
+
Fix bfloat16 support for nearest neighbor interpolation.
|
78 |
+
"""
|
79 |
+
return super().forward(x.float()).type_as(x)
|
80 |
+
|
81 |
+
|
82 |
+
class Resample(nn.Module):
|
83 |
+
|
84 |
+
def __init__(self, dim, mode):
|
85 |
+
assert mode in ('none', 'upsample2d', 'upsample3d', 'downsample2d',
|
86 |
+
'downsample3d')
|
87 |
+
super().__init__()
|
88 |
+
self.dim = dim
|
89 |
+
self.mode = mode
|
90 |
+
|
91 |
+
# layers
|
92 |
+
if mode == 'upsample2d':
|
93 |
+
self.resample = nn.Sequential(
|
94 |
+
Upsample(scale_factor=(2., 2.), mode='nearest-exact'),
|
95 |
+
nn.Conv2d(dim, dim // 2, 3, padding=1))
|
96 |
+
elif mode == 'upsample3d':
|
97 |
+
self.resample = nn.Sequential(
|
98 |
+
Upsample(scale_factor=(2., 2.), mode='nearest-exact'),
|
99 |
+
nn.Conv2d(dim, dim // 2, 3, padding=1))
|
100 |
+
self.time_conv = CausalConv3d(dim,
|
101 |
+
dim * 2, (3, 1, 1),
|
102 |
+
padding=(1, 0, 0))
|
103 |
+
|
104 |
+
elif mode == 'downsample2d':
|
105 |
+
self.resample = nn.Sequential(
|
106 |
+
nn.ZeroPad2d((0, 1, 0, 1)),
|
107 |
+
nn.Conv2d(dim, dim, 3, stride=(2, 2)))
|
108 |
+
elif mode == 'downsample3d':
|
109 |
+
self.resample = nn.Sequential(
|
110 |
+
nn.ZeroPad2d((0, 1, 0, 1)),
|
111 |
+
nn.Conv2d(dim, dim, 3, stride=(2, 2)))
|
112 |
+
self.time_conv = CausalConv3d(dim,
|
113 |
+
dim, (3, 1, 1),
|
114 |
+
stride=(2, 1, 1),
|
115 |
+
padding=(0, 0, 0))
|
116 |
+
|
117 |
+
else:
|
118 |
+
self.resample = nn.Identity()
|
119 |
+
|
120 |
+
def forward(self, x, feat_cache=None, feat_idx=[0]):
|
121 |
+
b, c, t, h, w = x.size()
|
122 |
+
if self.mode == 'upsample3d':
|
123 |
+
if feat_cache is not None:
|
124 |
+
idx = feat_idx[0]
|
125 |
+
if feat_cache[idx] is None:
|
126 |
+
feat_cache[idx] = 'Rep'
|
127 |
+
feat_idx[0] += 1
|
128 |
+
else:
|
129 |
+
|
130 |
+
cache_x = x[:, :, -CACHE_T:, :, :].clone()
|
131 |
+
if cache_x.shape[2] < 2 and feat_cache[
|
132 |
+
idx] is not None and feat_cache[idx] != 'Rep':
|
133 |
+
# cache last frame of last two chunk
|
134 |
+
cache_x = torch.cat([
|
135 |
+
feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(
|
136 |
+
cache_x.device), cache_x
|
137 |
+
],
|
138 |
+
dim=2)
|
139 |
+
if cache_x.shape[2] < 2 and feat_cache[
|
140 |
+
idx] is not None and feat_cache[idx] == 'Rep':
|
141 |
+
cache_x = torch.cat([
|
142 |
+
torch.zeros_like(cache_x).to(cache_x.device),
|
143 |
+
cache_x
|
144 |
+
],
|
145 |
+
dim=2)
|
146 |
+
if feat_cache[idx] == 'Rep':
|
147 |
+
x = self.time_conv(x)
|
148 |
+
else:
|
149 |
+
x = self.time_conv(x, feat_cache[idx])
|
150 |
+
feat_cache[idx] = cache_x
|
151 |
+
feat_idx[0] += 1
|
152 |
+
|
153 |
+
x = x.reshape(b, 2, c, t, h, w)
|
154 |
+
x = torch.stack((x[:, 0, :, :, :, :], x[:, 1, :, :, :, :]),
|
155 |
+
3)
|
156 |
+
x = x.reshape(b, c, t * 2, h, w)
|
157 |
+
t = x.shape[2]
|
158 |
+
x = rearrange(x, 'b c t h w -> (b t) c h w')
|
159 |
+
x = self.resample(x)
|
160 |
+
x = rearrange(x, '(b t) c h w -> b c t h w', t=t)
|
161 |
+
|
162 |
+
if self.mode == 'downsample3d':
|
163 |
+
if feat_cache is not None:
|
164 |
+
idx = feat_idx[0]
|
165 |
+
if feat_cache[idx] is None:
|
166 |
+
feat_cache[idx] = x.clone()
|
167 |
+
feat_idx[0] += 1
|
168 |
+
else:
|
169 |
+
cache_x = x[:, :, -1:, :, :].clone()
|
170 |
+
x = self.time_conv(
|
171 |
+
torch.cat([feat_cache[idx][:, :, -1:, :, :], x], 2))
|
172 |
+
feat_cache[idx] = cache_x
|
173 |
+
feat_idx[0] += 1
|
174 |
+
return x
|
175 |
+
|
176 |
+
def init_weight(self, conv):
|
177 |
+
conv_weight = conv.weight
|
178 |
+
nn.init.zeros_(conv_weight)
|
179 |
+
c1, c2, t, h, w = conv_weight.size()
|
180 |
+
one_matrix = torch.eye(c1, c2)
|
181 |
+
init_matrix = one_matrix
|
182 |
+
nn.init.zeros_(conv_weight)
|
183 |
+
conv_weight.data[:, :, 1, 0, 0] = init_matrix
|
184 |
+
conv.weight.data.copy_(conv_weight)
|
185 |
+
nn.init.zeros_(conv.bias.data)
|
186 |
+
|
187 |
+
def init_weight2(self, conv):
|
188 |
+
conv_weight = conv.weight.data
|
189 |
+
nn.init.zeros_(conv_weight)
|
190 |
+
c1, c2, t, h, w = conv_weight.size()
|
191 |
+
init_matrix = torch.eye(c1 // 2, c2)
|
192 |
+
conv_weight[:c1 // 2, :, -1, 0, 0] = init_matrix
|
193 |
+
conv_weight[c1 // 2:, :, -1, 0, 0] = init_matrix
|
194 |
+
conv.weight.data.copy_(conv_weight)
|
195 |
+
nn.init.zeros_(conv.bias.data)
|
196 |
+
|
197 |
+
|
198 |
+
class ResidualBlock(nn.Module):
|
199 |
+
|
200 |
+
def __init__(self, in_dim, out_dim, dropout=0.0):
|
201 |
+
super().__init__()
|
202 |
+
self.in_dim = in_dim
|
203 |
+
self.out_dim = out_dim
|
204 |
+
|
205 |
+
# layers
|
206 |
+
self.residual = nn.Sequential(
|
207 |
+
RMS_norm(in_dim, images=False), nn.SiLU(),
|
208 |
+
CausalConv3d(in_dim, out_dim, 3, padding=1),
|
209 |
+
RMS_norm(out_dim, images=False), nn.SiLU(), nn.Dropout(dropout),
|
210 |
+
CausalConv3d(out_dim, out_dim, 3, padding=1))
|
211 |
+
self.shortcut = CausalConv3d(in_dim, out_dim, 1) \
|
212 |
+
if in_dim != out_dim else nn.Identity()
|
213 |
+
|
214 |
+
def forward(self, x, feat_cache=None, feat_idx=[0]):
|
215 |
+
h = self.shortcut(x)
|
216 |
+
for layer in self.residual:
|
217 |
+
if check_is_instance(layer, CausalConv3d) and feat_cache is not None:
|
218 |
+
idx = feat_idx[0]
|
219 |
+
cache_x = x[:, :, -CACHE_T:, :, :].clone()
|
220 |
+
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
|
221 |
+
# cache last frame of last two chunk
|
222 |
+
cache_x = torch.cat([
|
223 |
+
feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(
|
224 |
+
cache_x.device), cache_x
|
225 |
+
],
|
226 |
+
dim=2)
|
227 |
+
x = layer(x, feat_cache[idx])
|
228 |
+
feat_cache[idx] = cache_x
|
229 |
+
feat_idx[0] += 1
|
230 |
+
else:
|
231 |
+
x = layer(x)
|
232 |
+
return x + h
|
233 |
+
|
234 |
+
|
235 |
+
class AttentionBlock(nn.Module):
|
236 |
+
"""
|
237 |
+
Causal self-attention with a single head.
|
238 |
+
"""
|
239 |
+
|
240 |
+
def __init__(self, dim):
|
241 |
+
super().__init__()
|
242 |
+
self.dim = dim
|
243 |
+
|
244 |
+
# layers
|
245 |
+
self.norm = RMS_norm(dim)
|
246 |
+
self.to_qkv = nn.Conv2d(dim, dim * 3, 1)
|
247 |
+
self.proj = nn.Conv2d(dim, dim, 1)
|
248 |
+
|
249 |
+
# zero out the last layer params
|
250 |
+
nn.init.zeros_(self.proj.weight)
|
251 |
+
|
252 |
+
def forward(self, x):
|
253 |
+
identity = x
|
254 |
+
b, c, t, h, w = x.size()
|
255 |
+
x = rearrange(x, 'b c t h w -> (b t) c h w')
|
256 |
+
x = self.norm(x)
|
257 |
+
# compute query, key, value
|
258 |
+
q, k, v = self.to_qkv(x).reshape(b * t, 1, c * 3, -1).permute(
|
259 |
+
0, 1, 3, 2).contiguous().chunk(3, dim=-1)
|
260 |
+
|
261 |
+
# apply attention
|
262 |
+
x = F.scaled_dot_product_attention(
|
263 |
+
q,
|
264 |
+
k,
|
265 |
+
v,
|
266 |
+
#attn_mask=block_causal_mask(q, block_size=h * w)
|
267 |
+
)
|
268 |
+
x = x.squeeze(1).permute(0, 2, 1).reshape(b * t, c, h, w)
|
269 |
+
|
270 |
+
# output
|
271 |
+
x = self.proj(x)
|
272 |
+
x = rearrange(x, '(b t) c h w-> b c t h w', t=t)
|
273 |
+
return x + identity
|
274 |
+
|
275 |
+
|
276 |
+
class Encoder3d(nn.Module):
|
277 |
+
|
278 |
+
def __init__(self,
|
279 |
+
dim=128,
|
280 |
+
z_dim=4,
|
281 |
+
dim_mult=[1, 2, 4, 4],
|
282 |
+
num_res_blocks=2,
|
283 |
+
attn_scales=[],
|
284 |
+
temperal_downsample=[True, True, False],
|
285 |
+
dropout=0.0):
|
286 |
+
super().__init__()
|
287 |
+
self.dim = dim
|
288 |
+
self.z_dim = z_dim
|
289 |
+
self.dim_mult = dim_mult
|
290 |
+
self.num_res_blocks = num_res_blocks
|
291 |
+
self.attn_scales = attn_scales
|
292 |
+
self.temperal_downsample = temperal_downsample
|
293 |
+
|
294 |
+
# dimensions
|
295 |
+
dims = [dim * u for u in [1] + dim_mult]
|
296 |
+
scale = 1.0
|
297 |
+
|
298 |
+
# init block
|
299 |
+
self.conv1 = CausalConv3d(3, dims[0], 3, padding=1)
|
300 |
+
|
301 |
+
# downsample blocks
|
302 |
+
downsamples = []
|
303 |
+
for i, (in_dim, out_dim) in enumerate(zip(dims[:-1], dims[1:])):
|
304 |
+
# residual (+attention) blocks
|
305 |
+
for _ in range(num_res_blocks):
|
306 |
+
downsamples.append(ResidualBlock(in_dim, out_dim, dropout))
|
307 |
+
if scale in attn_scales:
|
308 |
+
downsamples.append(AttentionBlock(out_dim))
|
309 |
+
in_dim = out_dim
|
310 |
+
|
311 |
+
# downsample block
|
312 |
+
if i != len(dim_mult) - 1:
|
313 |
+
mode = 'downsample3d' if temperal_downsample[
|
314 |
+
i] else 'downsample2d'
|
315 |
+
downsamples.append(Resample(out_dim, mode=mode))
|
316 |
+
scale /= 2.0
|
317 |
+
self.downsamples = nn.Sequential(*downsamples)
|
318 |
+
|
319 |
+
# middle blocks
|
320 |
+
self.middle = nn.Sequential(ResidualBlock(out_dim, out_dim, dropout),
|
321 |
+
AttentionBlock(out_dim),
|
322 |
+
ResidualBlock(out_dim, out_dim, dropout))
|
323 |
+
|
324 |
+
# output blocks
|
325 |
+
self.head = nn.Sequential(RMS_norm(out_dim, images=False), nn.SiLU(),
|
326 |
+
CausalConv3d(out_dim, z_dim, 3, padding=1))
|
327 |
+
|
328 |
+
def forward(self, x, feat_cache=None, feat_idx=[0]):
|
329 |
+
if feat_cache is not None:
|
330 |
+
idx = feat_idx[0]
|
331 |
+
cache_x = x[:, :, -CACHE_T:, :, :].clone()
|
332 |
+
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
|
333 |
+
# cache last frame of last two chunk
|
334 |
+
cache_x = torch.cat([
|
335 |
+
feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(
|
336 |
+
cache_x.device), cache_x
|
337 |
+
],
|
338 |
+
dim=2)
|
339 |
+
x = self.conv1(x, feat_cache[idx])
|
340 |
+
feat_cache[idx] = cache_x
|
341 |
+
feat_idx[0] += 1
|
342 |
+
else:
|
343 |
+
x = self.conv1(x)
|
344 |
+
|
345 |
+
## downsamples
|
346 |
+
for layer in self.downsamples:
|
347 |
+
if feat_cache is not None:
|
348 |
+
x = layer(x, feat_cache, feat_idx)
|
349 |
+
else:
|
350 |
+
x = layer(x)
|
351 |
+
|
352 |
+
## middle
|
353 |
+
for layer in self.middle:
|
354 |
+
if check_is_instance(layer, ResidualBlock) and feat_cache is not None:
|
355 |
+
x = layer(x, feat_cache, feat_idx)
|
356 |
+
else:
|
357 |
+
x = layer(x)
|
358 |
+
|
359 |
+
## head
|
360 |
+
for layer in self.head:
|
361 |
+
if check_is_instance(layer, CausalConv3d) and feat_cache is not None:
|
362 |
+
idx = feat_idx[0]
|
363 |
+
cache_x = x[:, :, -CACHE_T:, :, :].clone()
|
364 |
+
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
|
365 |
+
# cache last frame of last two chunk
|
366 |
+
cache_x = torch.cat([
|
367 |
+
feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(
|
368 |
+
cache_x.device), cache_x
|
369 |
+
],
|
370 |
+
dim=2)
|
371 |
+
x = layer(x, feat_cache[idx])
|
372 |
+
feat_cache[idx] = cache_x
|
373 |
+
feat_idx[0] += 1
|
374 |
+
else:
|
375 |
+
x = layer(x)
|
376 |
+
return x
|
377 |
+
|
378 |
+
|
379 |
+
class Decoder3d(nn.Module):
|
380 |
+
|
381 |
+
def __init__(self,
|
382 |
+
dim=128,
|
383 |
+
z_dim=4,
|
384 |
+
dim_mult=[1, 2, 4, 4],
|
385 |
+
num_res_blocks=2,
|
386 |
+
attn_scales=[],
|
387 |
+
temperal_upsample=[False, True, True],
|
388 |
+
dropout=0.0):
|
389 |
+
super().__init__()
|
390 |
+
self.dim = dim
|
391 |
+
self.z_dim = z_dim
|
392 |
+
self.dim_mult = dim_mult
|
393 |
+
self.num_res_blocks = num_res_blocks
|
394 |
+
self.attn_scales = attn_scales
|
395 |
+
self.temperal_upsample = temperal_upsample
|
396 |
+
|
397 |
+
# dimensions
|
398 |
+
dims = [dim * u for u in [dim_mult[-1]] + dim_mult[::-1]]
|
399 |
+
scale = 1.0 / 2**(len(dim_mult) - 2)
|
400 |
+
|
401 |
+
# init block
|
402 |
+
self.conv1 = CausalConv3d(z_dim, dims[0], 3, padding=1)
|
403 |
+
|
404 |
+
# middle blocks
|
405 |
+
self.middle = nn.Sequential(ResidualBlock(dims[0], dims[0], dropout),
|
406 |
+
AttentionBlock(dims[0]),
|
407 |
+
ResidualBlock(dims[0], dims[0], dropout))
|
408 |
+
|
409 |
+
# upsample blocks
|
410 |
+
upsamples = []
|
411 |
+
for i, (in_dim, out_dim) in enumerate(zip(dims[:-1], dims[1:])):
|
412 |
+
# residual (+attention) blocks
|
413 |
+
if i == 1 or i == 2 or i == 3:
|
414 |
+
in_dim = in_dim // 2
|
415 |
+
for _ in range(num_res_blocks + 1):
|
416 |
+
upsamples.append(ResidualBlock(in_dim, out_dim, dropout))
|
417 |
+
if scale in attn_scales:
|
418 |
+
upsamples.append(AttentionBlock(out_dim))
|
419 |
+
in_dim = out_dim
|
420 |
+
|
421 |
+
# upsample block
|
422 |
+
if i != len(dim_mult) - 1:
|
423 |
+
mode = 'upsample3d' if temperal_upsample[i] else 'upsample2d'
|
424 |
+
upsamples.append(Resample(out_dim, mode=mode))
|
425 |
+
scale *= 2.0
|
426 |
+
self.upsamples = nn.Sequential(*upsamples)
|
427 |
+
|
428 |
+
# output blocks
|
429 |
+
self.head = nn.Sequential(RMS_norm(out_dim, images=False), nn.SiLU(),
|
430 |
+
CausalConv3d(out_dim, 3, 3, padding=1))
|
431 |
+
|
432 |
+
def forward(self, x, feat_cache=None, feat_idx=[0]):
|
433 |
+
## conv1
|
434 |
+
if feat_cache is not None:
|
435 |
+
idx = feat_idx[0]
|
436 |
+
cache_x = x[:, :, -CACHE_T:, :, :].clone()
|
437 |
+
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
|
438 |
+
# cache last frame of last two chunk
|
439 |
+
cache_x = torch.cat([
|
440 |
+
feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(
|
441 |
+
cache_x.device), cache_x
|
442 |
+
],
|
443 |
+
dim=2)
|
444 |
+
x = self.conv1(x, feat_cache[idx])
|
445 |
+
feat_cache[idx] = cache_x
|
446 |
+
feat_idx[0] += 1
|
447 |
+
else:
|
448 |
+
x = self.conv1(x)
|
449 |
+
|
450 |
+
## middle
|
451 |
+
for layer in self.middle:
|
452 |
+
if check_is_instance(layer, ResidualBlock) and feat_cache is not None:
|
453 |
+
x = layer(x, feat_cache, feat_idx)
|
454 |
+
else:
|
455 |
+
x = layer(x)
|
456 |
+
|
457 |
+
## upsamples
|
458 |
+
for layer in self.upsamples:
|
459 |
+
if feat_cache is not None:
|
460 |
+
x = layer(x, feat_cache, feat_idx)
|
461 |
+
else:
|
462 |
+
x = layer(x)
|
463 |
+
|
464 |
+
## head
|
465 |
+
for layer in self.head:
|
466 |
+
if check_is_instance(layer, CausalConv3d) and feat_cache is not None:
|
467 |
+
idx = feat_idx[0]
|
468 |
+
cache_x = x[:, :, -CACHE_T:, :, :].clone()
|
469 |
+
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
|
470 |
+
# cache last frame of last two chunk
|
471 |
+
cache_x = torch.cat([
|
472 |
+
feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(
|
473 |
+
cache_x.device), cache_x
|
474 |
+
],
|
475 |
+
dim=2)
|
476 |
+
x = layer(x, feat_cache[idx])
|
477 |
+
feat_cache[idx] = cache_x
|
478 |
+
feat_idx[0] += 1
|
479 |
+
else:
|
480 |
+
x = layer(x)
|
481 |
+
return x
|
482 |
+
|
483 |
+
|
484 |
+
def count_conv3d(model):
|
485 |
+
count = 0
|
486 |
+
for m in model.modules():
|
487 |
+
if check_is_instance(m, CausalConv3d):
|
488 |
+
count += 1
|
489 |
+
return count
|
490 |
+
|
491 |
+
|
492 |
+
class VideoVAE_(nn.Module):
|
493 |
+
|
494 |
+
def __init__(self,
|
495 |
+
dim=96,
|
496 |
+
z_dim=16,
|
497 |
+
dim_mult=[1, 2, 4, 4],
|
498 |
+
num_res_blocks=2,
|
499 |
+
attn_scales=[],
|
500 |
+
temperal_downsample=[False, True, True],
|
501 |
+
dropout=0.0):
|
502 |
+
super().__init__()
|
503 |
+
self.dim = dim
|
504 |
+
self.z_dim = z_dim
|
505 |
+
self.dim_mult = dim_mult
|
506 |
+
self.num_res_blocks = num_res_blocks
|
507 |
+
self.attn_scales = attn_scales
|
508 |
+
self.temperal_downsample = temperal_downsample
|
509 |
+
self.temperal_upsample = temperal_downsample[::-1]
|
510 |
+
|
511 |
+
# modules
|
512 |
+
self.encoder = Encoder3d(dim, z_dim * 2, dim_mult, num_res_blocks,
|
513 |
+
attn_scales, self.temperal_downsample, dropout)
|
514 |
+
self.conv1 = CausalConv3d(z_dim * 2, z_dim * 2, 1)
|
515 |
+
self.conv2 = CausalConv3d(z_dim, z_dim, 1)
|
516 |
+
self.decoder = Decoder3d(dim, z_dim, dim_mult, num_res_blocks,
|
517 |
+
attn_scales, self.temperal_upsample, dropout)
|
518 |
+
|
519 |
+
def forward(self, x):
|
520 |
+
mu, log_var = self.encode(x)
|
521 |
+
z = self.reparameterize(mu, log_var)
|
522 |
+
x_recon = self.decode(z)
|
523 |
+
return x_recon, mu, log_var
|
524 |
+
|
525 |
+
def encode(self, x, scale): # x: B, C, T, H, W
|
526 |
+
self.clear_cache()
|
527 |
+
## cache
|
528 |
+
t = x.shape[2]
|
529 |
+
iter_ = 1 + (t - 1) // 4
|
530 |
+
|
531 |
+
for i in range(iter_):
|
532 |
+
self._enc_conv_idx = [0]
|
533 |
+
if i == 0:
|
534 |
+
out = self.encoder(x[:, :, :1, :, :],
|
535 |
+
feat_cache=self._enc_feat_map,
|
536 |
+
feat_idx=self._enc_conv_idx)
|
537 |
+
else:
|
538 |
+
out_ = self.encoder(x[:, :, 1 + 4 * (i - 1):1 + 4 * i, :, :],
|
539 |
+
feat_cache=self._enc_feat_map,
|
540 |
+
feat_idx=self._enc_conv_idx)
|
541 |
+
out = torch.cat([out, out_], 2)
|
542 |
+
mu, log_var = self.conv1(out).chunk(2, dim=1)
|
543 |
+
if isinstance(scale[0], torch.Tensor):
|
544 |
+
scale = [s.to(dtype=mu.dtype, device=mu.device) for s in scale]
|
545 |
+
mu = (mu - scale[0].view(1, self.z_dim, 1, 1, 1)) * scale[1].view(
|
546 |
+
1, self.z_dim, 1, 1, 1)
|
547 |
+
else:
|
548 |
+
scale = scale.to(dtype=mu.dtype, device=mu.device)
|
549 |
+
mu = (mu - scale[0]) * scale[1]
|
550 |
+
return mu
|
551 |
+
|
552 |
+
def decode(self, z, scale):
|
553 |
+
self.clear_cache()
|
554 |
+
# z: [b,c,t,h,w]
|
555 |
+
if isinstance(scale[0], torch.Tensor):
|
556 |
+
scale = [s.to(dtype=z.dtype, device=z.device) for s in scale]
|
557 |
+
z = z / scale[1].view(1, self.z_dim, 1, 1, 1) + scale[0].view(
|
558 |
+
1, self.z_dim, 1, 1, 1)
|
559 |
+
else:
|
560 |
+
scale = scale.to(dtype=z.dtype, device=z.device)
|
561 |
+
z = z / scale[1] + scale[0]
|
562 |
+
iter_ = z.shape[2]
|
563 |
+
x = self.conv2(z)
|
564 |
+
for i in range(iter_):
|
565 |
+
self._conv_idx = [0]
|
566 |
+
if i == 0:
|
567 |
+
out = self.decoder(x[:, :, i:i + 1, :, :],
|
568 |
+
feat_cache=self._feat_map,
|
569 |
+
feat_idx=self._conv_idx)
|
570 |
+
else:
|
571 |
+
out_ = self.decoder(x[:, :, i:i + 1, :, :],
|
572 |
+
feat_cache=self._feat_map,
|
573 |
+
feat_idx=self._conv_idx)
|
574 |
+
out = torch.cat([out, out_], 2) # may add tensor offload
|
575 |
+
return out
|
576 |
+
|
577 |
+
def reparameterize(self, mu, log_var):
|
578 |
+
std = torch.exp(0.5 * log_var)
|
579 |
+
eps = torch.randn_like(std)
|
580 |
+
return eps * std + mu
|
581 |
+
|
582 |
+
def sample(self, imgs, deterministic=False):
|
583 |
+
mu, log_var = self.encode(imgs)
|
584 |
+
if deterministic:
|
585 |
+
return mu
|
586 |
+
std = torch.exp(0.5 * log_var.clamp(-30.0, 20.0))
|
587 |
+
return mu + std * torch.randn_like(std)
|
588 |
+
|
589 |
+
def clear_cache(self):
|
590 |
+
self._conv_num = count_conv3d(self.decoder)
|
591 |
+
self._conv_idx = [0]
|
592 |
+
self._feat_map = [None] * self._conv_num
|
593 |
+
# cache encode
|
594 |
+
self._enc_conv_num = count_conv3d(self.encoder)
|
595 |
+
self._enc_conv_idx = [0]
|
596 |
+
self._enc_feat_map = [None] * self._enc_conv_num
|
597 |
+
|
598 |
+
|
599 |
+
class WanVideoVAE(nn.Module):
|
600 |
+
|
601 |
+
def __init__(self, z_dim=16):
|
602 |
+
super().__init__()
|
603 |
+
|
604 |
+
mean = [
|
605 |
+
-0.7571, -0.7089, -0.9113, 0.1075, -0.1745, 0.9653, -0.1517, 1.5508,
|
606 |
+
0.4134, -0.0715, 0.5517, -0.3632, -0.1922, -0.9497, 0.2503, -0.2921
|
607 |
+
]
|
608 |
+
std = [
|
609 |
+
2.8184, 1.4541, 2.3275, 2.6558, 1.2196, 1.7708, 2.6052, 2.0743,
|
610 |
+
3.2687, 2.1526, 2.8652, 1.5579, 1.6382, 1.1253, 2.8251, 1.9160
|
611 |
+
]
|
612 |
+
self.mean = torch.tensor(mean)
|
613 |
+
self.std = torch.tensor(std)
|
614 |
+
self.scale = [self.mean, 1.0 / self.std]
|
615 |
+
|
616 |
+
# init model
|
617 |
+
self.model = VideoVAE_(z_dim=z_dim).eval().requires_grad_(False)
|
618 |
+
self.upsampling_factor = 8
|
619 |
+
|
620 |
+
|
621 |
+
def build_1d_mask(self, length, left_bound, right_bound, border_width):
|
622 |
+
x = torch.ones((length,))
|
623 |
+
if not left_bound:
|
624 |
+
x[:border_width] = (torch.arange(border_width) + 1) / border_width
|
625 |
+
if not right_bound:
|
626 |
+
x[-border_width:] = torch.flip((torch.arange(border_width) + 1) / border_width, dims=(0,))
|
627 |
+
return x
|
628 |
+
|
629 |
+
|
630 |
+
def build_mask(self, data, is_bound, border_width):
|
631 |
+
_, _, _, H, W = data.shape
|
632 |
+
h = self.build_1d_mask(H, is_bound[0], is_bound[1], border_width[0])
|
633 |
+
w = self.build_1d_mask(W, is_bound[2], is_bound[3], border_width[1])
|
634 |
+
|
635 |
+
h = repeat(h, "H -> H W", H=H, W=W)
|
636 |
+
w = repeat(w, "W -> H W", H=H, W=W)
|
637 |
+
|
638 |
+
mask = torch.stack([h, w]).min(dim=0).values
|
639 |
+
mask = rearrange(mask, "H W -> 1 1 1 H W")
|
640 |
+
return mask
|
641 |
+
|
642 |
+
|
643 |
+
def tiled_decode(self, hidden_states, device, tile_size, tile_stride):
|
644 |
+
_, _, T, H, W = hidden_states.shape
|
645 |
+
size_h, size_w = tile_size
|
646 |
+
stride_h, stride_w = tile_stride
|
647 |
+
|
648 |
+
# Split tasks
|
649 |
+
tasks = []
|
650 |
+
for h in range(0, H, stride_h):
|
651 |
+
if (h-stride_h >= 0 and h-stride_h+size_h >= H): continue
|
652 |
+
for w in range(0, W, stride_w):
|
653 |
+
if (w-stride_w >= 0 and w-stride_w+size_w >= W): continue
|
654 |
+
h_, w_ = h + size_h, w + size_w
|
655 |
+
tasks.append((h, h_, w, w_))
|
656 |
+
|
657 |
+
data_device = "cpu"
|
658 |
+
computation_device = device
|
659 |
+
|
660 |
+
out_T = T * 4 - 3
|
661 |
+
weight = torch.zeros((1, 1, out_T, H * self.upsampling_factor, W * self.upsampling_factor), dtype=hidden_states.dtype, device=data_device)
|
662 |
+
values = torch.zeros((1, 3, out_T, H * self.upsampling_factor, W * self.upsampling_factor), dtype=hidden_states.dtype, device=data_device)
|
663 |
+
|
664 |
+
for h, h_, w, w_ in tqdm(tasks, desc="VAE decoding"):
|
665 |
+
hidden_states_batch = hidden_states[:, :, :, h:h_, w:w_].to(computation_device)
|
666 |
+
hidden_states_batch = self.model.decode(hidden_states_batch, self.scale).to(data_device)
|
667 |
+
|
668 |
+
mask = self.build_mask(
|
669 |
+
hidden_states_batch,
|
670 |
+
is_bound=(h==0, h_>=H, w==0, w_>=W),
|
671 |
+
border_width=((size_h - stride_h) * self.upsampling_factor, (size_w - stride_w) * self.upsampling_factor)
|
672 |
+
).to(dtype=hidden_states.dtype, device=data_device)
|
673 |
+
|
674 |
+
target_h = h * self.upsampling_factor
|
675 |
+
target_w = w * self.upsampling_factor
|
676 |
+
values[
|
677 |
+
:,
|
678 |
+
:,
|
679 |
+
:,
|
680 |
+
target_h:target_h + hidden_states_batch.shape[3],
|
681 |
+
target_w:target_w + hidden_states_batch.shape[4],
|
682 |
+
] += hidden_states_batch * mask
|
683 |
+
weight[
|
684 |
+
:,
|
685 |
+
:,
|
686 |
+
:,
|
687 |
+
target_h: target_h + hidden_states_batch.shape[3],
|
688 |
+
target_w: target_w + hidden_states_batch.shape[4],
|
689 |
+
] += mask
|
690 |
+
values = values / weight
|
691 |
+
values = values.float().clamp_(-1, 1)
|
692 |
+
return values
|
693 |
+
|
694 |
+
|
695 |
+
def tiled_encode(self, video, device, tile_size, tile_stride):
|
696 |
+
_, _, T, H, W = video.shape
|
697 |
+
size_h, size_w = tile_size
|
698 |
+
stride_h, stride_w = tile_stride
|
699 |
+
|
700 |
+
# Split tasks
|
701 |
+
tasks = []
|
702 |
+
for h in range(0, H, stride_h):
|
703 |
+
if (h-stride_h >= 0 and h-stride_h+size_h >= H): continue
|
704 |
+
for w in range(0, W, stride_w):
|
705 |
+
if (w-stride_w >= 0 and w-stride_w+size_w >= W): continue
|
706 |
+
h_, w_ = h + size_h, w + size_w
|
707 |
+
tasks.append((h, h_, w, w_))
|
708 |
+
|
709 |
+
data_device = "cpu"
|
710 |
+
computation_device = device
|
711 |
+
|
712 |
+
out_T = (T + 3) // 4
|
713 |
+
weight = torch.zeros((1, 1, out_T, H // self.upsampling_factor, W // self.upsampling_factor), dtype=video.dtype, device=data_device)
|
714 |
+
values = torch.zeros((1, 16, out_T, H // self.upsampling_factor, W // self.upsampling_factor), dtype=video.dtype, device=data_device)
|
715 |
+
|
716 |
+
for h, h_, w, w_ in tqdm(tasks, desc="VAE encoding"):
|
717 |
+
hidden_states_batch = video[:, :, :, h:h_, w:w_].to(computation_device)
|
718 |
+
hidden_states_batch = self.model.encode(hidden_states_batch, self.scale).to(data_device)
|
719 |
+
|
720 |
+
mask = self.build_mask(
|
721 |
+
hidden_states_batch,
|
722 |
+
is_bound=(h==0, h_>=H, w==0, w_>=W),
|
723 |
+
border_width=((size_h - stride_h) // self.upsampling_factor, (size_w - stride_w) // self.upsampling_factor)
|
724 |
+
).to(dtype=video.dtype, device=data_device)
|
725 |
+
|
726 |
+
target_h = h // self.upsampling_factor
|
727 |
+
target_w = w // self.upsampling_factor
|
728 |
+
values[
|
729 |
+
:,
|
730 |
+
:,
|
731 |
+
:,
|
732 |
+
target_h:target_h + hidden_states_batch.shape[3],
|
733 |
+
target_w:target_w + hidden_states_batch.shape[4],
|
734 |
+
] += hidden_states_batch * mask
|
735 |
+
weight[
|
736 |
+
:,
|
737 |
+
:,
|
738 |
+
:,
|
739 |
+
target_h: target_h + hidden_states_batch.shape[3],
|
740 |
+
target_w: target_w + hidden_states_batch.shape[4],
|
741 |
+
] += mask
|
742 |
+
values = values / weight
|
743 |
+
values = values.float()
|
744 |
+
return values
|
745 |
+
|
746 |
+
|
747 |
+
def single_encode(self, video, device):
|
748 |
+
video = video.to(device)
|
749 |
+
x = self.model.encode(video, self.scale)
|
750 |
+
return x.float()
|
751 |
+
|
752 |
+
|
753 |
+
def single_decode(self, hidden_state, device):
|
754 |
+
hidden_state = hidden_state.to(device)
|
755 |
+
video = self.model.decode(hidden_state, self.scale)
|
756 |
+
return video.float().clamp_(-1, 1)
|
757 |
+
|
758 |
+
|
759 |
+
def encode(self, videos, device, tiled=False, tile_size=(34, 34), tile_stride=(18, 16)):
|
760 |
+
|
761 |
+
videos = [video.to("cpu") for video in videos]
|
762 |
+
hidden_states = []
|
763 |
+
for video in videos:
|
764 |
+
video = video.unsqueeze(0)
|
765 |
+
if tiled:
|
766 |
+
tile_size = (tile_size[0] * 8, tile_size[1] * 8)
|
767 |
+
tile_stride = (tile_stride[0] * 8, tile_stride[1] * 8)
|
768 |
+
hidden_state = self.tiled_encode(video, device, tile_size, tile_stride)
|
769 |
+
else:
|
770 |
+
hidden_state = self.single_encode(video, device)
|
771 |
+
hidden_state = hidden_state.squeeze(0)
|
772 |
+
hidden_states.append(hidden_state)
|
773 |
+
hidden_states = torch.stack(hidden_states)
|
774 |
+
return hidden_states
|
775 |
+
|
776 |
+
|
777 |
+
def decode(self, hidden_states, device, tiled=False, tile_size=(34, 34), tile_stride=(18, 16)):
|
778 |
+
hidden_states = [hidden_state.to("cpu") for hidden_state in hidden_states]
|
779 |
+
videos = []
|
780 |
+
for hidden_state in hidden_states:
|
781 |
+
hidden_state = hidden_state.unsqueeze(0)
|
782 |
+
if tiled:
|
783 |
+
video = self.tiled_decode(hidden_state, device, tile_size, tile_stride)
|
784 |
+
else:
|
785 |
+
video = self.single_decode(hidden_state, device)
|
786 |
+
video = video.squeeze(0)
|
787 |
+
videos.append(video)
|
788 |
+
videos = torch.stack(videos)
|
789 |
+
return videos
|
790 |
+
|
791 |
+
|
792 |
+
@staticmethod
|
793 |
+
def state_dict_converter():
|
794 |
+
return WanVideoVAEStateDictConverter()
|
795 |
+
|
796 |
+
|
797 |
+
class WanVideoVAEStateDictConverter:
|
798 |
+
|
799 |
+
def __init__(self):
|
800 |
+
pass
|
801 |
+
|
802 |
+
def from_civitai(self, state_dict):
|
803 |
+
state_dict_ = {}
|
804 |
+
if 'model_state' in state_dict:
|
805 |
+
state_dict = state_dict['model_state']
|
806 |
+
for name in state_dict:
|
807 |
+
state_dict_['model.' + name] = state_dict[name]
|
808 |
+
return state_dict_
|