Spaces:
Runtime error
Runtime error
File size: 5,510 Bytes
748cc87 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
import streamlit as st
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from PIL import Image
side_image = Image.open('Graphics/IL_Logo.png')
st.sidebar.image(side_image)
@st.cache
def convert_df_to_csv(df):
# IMPORTANT: Cache the conversion to prevent computation on every rerun
return df[['File_name','Prompt_no','Task','Score']].to_csv().encode('utf-8')
def plot_style_simple(results_df):
eval_sum = results_df.groupby('Task')['Score'].sum()
eval_count = results_df.groupby('Task')['Score'].count()
eval_share = (eval_sum/eval_count)*100
fig = plt.figure(figsize=(12, 3))
sns.barplot(x=eval_share.index, y=eval_share.values, palette='GnBu')
plt.xticks(rotation=-45)
plt.ylabel('Percentage correct')
plt.xlabel(' ')
return fig
def plot_style_combined(results_df, uploaded_df = None):
# Create joined dataframe of results and uploadd_df
uploaded_results_df = pd.read_csv(uploaded_df)
manual_results_df['Model']='Current'
uploaded_results_df['Model']='Uploaded'
results_df = pd.concat([manual_results_df,uploaded_results_df])
# Create scores for plot
eval_sum = results_df.groupby(['Model','Task'])['Score'].sum()
eval_count = results_df.groupby(['Model','Task'])['Score'].count()
eval_share = (eval_sum/eval_count)*100
eval_share = eval_share.reset_index()
# Create plot
fig = plt.figure(figsize=(12, 3))
sns.barplot(data=eval_share,x='Task',y='Score',hue='Model', palette='GnBu')
plt.xticks(rotation=-45)
plt.ylabel('Percentage correct')
plt.xlabel(' ')
return fig
assessment_result_frames = {}
st.title('Assessment Summary')
st.header('Manual assessment')
try:
if sum(st.session_state['eval_df']['manual_eval_completed'])>0:
# Display file uploader
manual_file_upload = st.file_uploader("Upload .csv with saved manual assessment for model comparison")
# Create dataset for manual summary plots
manual_eval_df = st.session_state['eval_df']
manual_eval_df['Score'] = manual_eval_df['manual_eval_task_score'].map({'Yes':True, 'No':False})
manual_results_df = manual_eval_df.loc[
(manual_eval_df['manual_eval']==True)&
(manual_eval_df['manual_eval_completed']==True)]
assessment_result_frames['Manual assessment'] = manual_results_df
# If df was uploaded for comparison, we create comparison plot, else simple plot
if manual_file_upload == None:
fig = plot_style_simple(manual_results_df)
st.pyplot(fig)
else:
fig = plot_style_combined(manual_results_df,manual_file_upload)
st.pyplot(fig)
st.download_button(
label="Download manual assessment data",
data=convert_df_to_csv(manual_results_df),
file_name='manual_assessment.csv',
mime='text/csv',
)
else:
st.write('Complete manual assessment to generate summary.')
except KeyError:
st.write('Complete automated assessment to generate summary.')
st.write(' ')
st.header('Automated assessment')
try:
# Create dataset for automated summary plots
auto_eval_df = st.session_state['auto_eval_df']
assessment_result_frames['Automated assessment'] = auto_eval_df
# Display file uploader
auto_file_upload = st.file_uploader("Upload .csv with saved automated assessment for model comparison")
# If df was uploaded for comparison, we create comparison plot, else simple plot
if auto_file_upload == None:
fig = plot_style_simple(auto_eval_df)
st.pyplot(fig)
else:
fig = plot_style_combined(auto_eval_df,auto_file_upload)
st.pyplot(fig)
st.download_button(
label="Download automated assessment data",
data=convert_df_to_csv(auto_eval_df),
file_name='automated_assessment.csv',
mime='text/csv',
)
except KeyError:
st.write('Complete automated assessment to generate summary.')
try:
# Start gallery
st.header('Assessment gallery')
assessment_method_selected = st.selectbox(
'Select generation method',
assessment_result_frames.keys())
if len(assessment_result_frames.keys())<1:
st.write('Complete manual or automated assessment to access images in the gallery.')
# Create needed info frames
gallery_df = assessment_result_frames[assessment_method_selected]
curr_prompt_dir = st.session_state['prompt_dir']
# Select task
tasks_available = gallery_df.Task.unique().tolist()
task_selected = st.selectbox('Select task type',tasks_available)
# Select image type
type_selected = st.selectbox(
'Select image type',
('Correctly generated images', 'Incorrectly generated images'))
type_selected_dict = {'Correctly generated images':True, 'Incorrectly generated images':False}
# Create df for presented images
gallery_df_print = gallery_df.loc[
(gallery_df['Score']==type_selected_dict[type_selected])&
(gallery_df['Task']==task_selected)]
# Select presented image and prompt
generation_number = st.number_input('Generation number',min_value=1, max_value=len(gallery_df_print), step=1)
gallery_row_print = gallery_df_print.iloc[int(generation_number-1)]
curr_Prompt_no = gallery_row_print.Prompt_no
curr_Prompt = curr_prompt_dir[curr_prompt_dir['ID']==int(curr_Prompt_no)].Prompt
curr_Picture_index = gallery_row_print.Picture_index.item()
# Plot prompt and image
st.write('Prompt: '+curr_Prompt.item())
st.image(st.session_state['uploaded_img'][curr_Picture_index],width=350)
#st.write(auto_df_print)
except IndexError:
st.write('There is no image availabe in your selected category.')
except KeyError:
pass
|