|
|
|
|
|
import gradio as gr |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
from peft import PeftModel |
|
import torch |
|
|
|
|
|
adapter_model_name = "acezxn/SOC_Task_Generation_Base" |
|
base_model_name = "unsloth/Llama-3.2-3B-Instruct-unsloth-bnb-4bit" |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(base_model_name) |
|
|
|
|
|
base_model = AutoModelForCausalLM.from_pretrained( |
|
base_model_name, |
|
|
|
load_in_4bit=False, |
|
device_map=None, |
|
trust_remote_code=True |
|
) |
|
|
|
|
|
base_model.to('cpu') |
|
|
|
|
|
adapter_model = PeftModel.from_pretrained(base_model, adapter_model_name) |
|
|
|
|
|
def generate_response(input_text): |
|
inputs = tokenizer(input_text, return_tensors="pt").to('cpu') |
|
outputs = adapter_model.generate(**inputs) |
|
response = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
return response |
|
|
|
|
|
iface = gr.Interface(fn=generate_response, |
|
inputs=gr.Textbox(lines=2, placeholder="Enter your input here..."), |
|
outputs=gr.Textbox(), |
|
title="Llama LORA Adapter - SOC Task Generation", |
|
description="This is a Gradio app that uses a Llama LORA adapter (acezxn/SOC_Task_Generation_Base) with the base model Llama-3.2-3B-Instruct-unsloth-bnb-4bit to generate task-related responses.") |
|
|
|
|
|
if __name__ == "__main__": |
|
iface.launch() |
|
|