Spaces:
Runtime error
Runtime error
import gradio as gr | |
import requests | |
import os | |
from PIL import Image, ImageOps | |
from io import BytesIO | |
from tqdm import tqdm | |
import time | |
import numpy as np | |
import base64 | |
from gradio.components import DownloadButton # Updated import | |
# Defining the repository information and the trigger word | |
repo = "artificialguybr/LineAniRedmond-LinearMangaSDXL-V2" | |
trigger_word = "lineart,LineAniAF," | |
# Hard set prompt template | |
hard_set_prompt = ( | |
"minimalist black and white single-line art illustration of [subject], created in one continuous, unbroken stroke from start to finish. " | |
"The design uses true black and true white values only, with no gradients or gray tones. The artwork emphasizes clean, connected, and flowing lines, " | |
"resulting in a sleek, modern aesthetic. The [subject] is depicted in a dynamic and recognizable pose, optimized for artistic purposes and ready for 3D printing applications." | |
) | |
constraints = ( | |
"MUST: be only black and white, must be single-line art, must never use gray values/shading/tint or hue of any kind, only true black and true white. " | |
"NEVER use anything besides a single black line of varying widths as necessary to achieve a result of the user's request." | |
) | |
def generate_image(prompt): | |
print("Generating image with prompt:", prompt) | |
api_url = f"https://api-inference.huggingface.co/models/{repo}" | |
token = os.getenv("HF_TOKEN") | |
headers = { | |
"Authorization": f"Bearer {token}" | |
} | |
# Incorporate the hard set prompt and constraints | |
full_prompt = ( | |
f"{hard_set_prompt.replace('[subject]', prompt)} {constraints} {trigger_word}" | |
) | |
payload = { | |
"inputs": full_prompt, | |
"parameters": { | |
"negative_prompt": "(non-minimalist, best quality, high quality, normal quality, hires, details, anything but basic 1-line-art inferred from user submitted text, overexposed, underexposed, grayscale, bw, bad photo, bad photography, bad art:1.4), (watermark, signature, text font, username, error, logo, words, letters, digits, autograph, trademark, name:1.2), (blur, blurry, grainy), morbid, ugly, asymmetrical, mutated malformed, mutilated, poorly lit, bad shadow, draft, cropped, out of frame, cut off, censored, jpeg artifacts, out of focus, glitch, duplicate, (airbrushed, cartoon, anime, semi-realistic, cgi, render, blender, digital art, manga, amateur:1.3), , :1.3)", | |
"num_inference_steps": 30, | |
"scheduler": "DPMSolverMultistepScheduler" | |
}, | |
} | |
error_count = 0 | |
pbar = tqdm(total=None, desc="Loading model") | |
while True: | |
print("Sending request to API...") | |
response = requests.post(api_url, headers=headers, json=payload) | |
print("API response status code:", response.status_code) | |
if response.status_code == 200: | |
print("Image generation successful!") | |
# Open the image and convert it to grayscale | |
image = Image.open(BytesIO(response.content)).convert("L") | |
# Convert the grayscale image to a binary image | |
image = image.point(lambda p: 255 if p > 128 else 0, mode='1') | |
# Invert the image for potrace (black on white) | |
image = ImageOps.invert(image) | |
# Convert the PIL image to a numpy array | |
array = np.array(image) | |
# Trace the bitmap to SVG | |
bitmap = potrace.Bitmap(array) | |
path = bitmap.trace() | |
# Generate SVG data | |
svg_data = path.to_svg() | |
return svg_data | |
elif response.status_code == 503: | |
time.sleep(1) | |
pbar.update(1) | |
elif response.status_code == 500 and error_count < 5: | |
time.sleep(1) | |
error_count += 1 | |
else: | |
print("API Error:", response.status_code) | |
raise Exception(f"API Error: {response.status_code}") | |
with gr.Blocks() as demo: | |
gr.Markdown("# LineArt XL Image Generator") | |
prompt = gr.Textbox(lines=2, placeholder="Describe the subject here...") | |
generate_button = gr.Button("Generate Image") | |
with gr.Row(): | |
svg_display = gr.HTML() | |
download_button = gr.Download(label="Download SVG") # Updated component usage | |
def display_svg(svg_data): | |
# Encode SVG data in base64 for data URI | |
svg_bytes = svg_data.encode('utf-8') | |
svg_b64 = base64.b64encode(svg_bytes).decode('utf-8') | |
# Create HTML content with an iframe | |
html_content = f'<iframe src="data:image/svg+xml;base64,{svg_b64}" width="500" height="500"></iframe>' | |
return html_content, svg_bytes | |
generate_button.click( | |
generate_image, | |
inputs=prompt, | |
outputs=None | |
).then( | |
display_svg, | |
inputs=generate_image, | |
outputs=[svg_display, download_button] | |
) | |
demo.launch() |