Spaces:
Runtime error
Runtime error
File size: 4,187 Bytes
c0d76a7 49da4ed c0d76a7 49da4ed c0d76a7 49da4ed c0d76a7 49da4ed c0d76a7 f4bf1aa c0d76a7 49da4ed c0d76a7 49da4ed c0d76a7 49da4ed c0d76a7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
import gradio as gr
import requests
import os
from PIL import Image
from io import BytesIO
from tqdm import tqdm
import time
# Defining the repository information and the trigger word
repo = "artificialguybr/LineAniRedmond-LinearMangaSDXL-V2"
trigger_word = "lineart,LineAniAF,"
# Hard set prompt template
hard_set_prompt = (
"minimalist black and white single-line art illustration of [subject], created in one continuous, unbroken stroke from start to finish. "
"The design uses true black and true white values only, with no gradients or gray tones. The artwork emphasizes clean, connected, and flowing lines, "
"resulting in a sleek, modern aesthetic. The [subject] is depicted in a dynamic and recognizable pose, optimized for artistic purposes and ready for 3D printing applications."
)
constraints = (
"MUST: be only black and white, must be single-line art, must never use gray values/shading/tint or hue of any kind, only true black and true white. "
"NEVER use anything besides a single black line of varying widths as necessary to achieve a result of the user's request."
)
def generate_image(prompt):
print("Generating image with prompt:", prompt)
api_url = f"https://api-inference.huggingface.co/models/{repo}"
# token = os.getenv("API_TOKEN") # Uncomment and use your Hugging Face API token
headers = {
# "Authorization": f"Bearer {token}"
}
# Incorporate the hard set prompt and constraints
full_prompt = (
f"{hard_set_prompt.replace('[subject]', prompt)} {constraints} {trigger_word}"
)
payload = {
"inputs": full_prompt,
"parameters": {
"negative_prompt": "(non-minimalist, best quality, high quality, normal quality, hires, details, anything but basic 1-line-art inferred from user submitted text, overexposed, underexposed, grayscale, bw, bad photo, bad photography, bad art:1.4), (watermark, signature, text font, username, error, logo, words, letters, digits, autograph, trademark, name:1.2), (blur, blurry, grainy), morbid, ugly, asymmetrical, mutated malformed, mutilated, poorly lit, bad shadow, draft, cropped, out of frame, cut off, censored, jpeg artifacts, out of focus, glitch, duplicate, (airbrushed, cartoon, anime, semi-realistic, cgi, render, blender, digital art, manga, amateur:1.3), , :1.3)",
"num_inference_steps": 30,
"scheduler": "DPMSolverMultistepScheduler"
},
}
error_count = 0
pbar = tqdm(total=None, desc="Loading model")
while True:
print("Sending request to API...")
response = requests.post(api_url, headers=headers, json=payload)
print("API response status code:", response.status_code)
if response.status_code == 200:
print("Image generation successful!")
return Image.open(BytesIO(response.content))
elif response.status_code == 503:
time.sleep(1)
pbar.update(1)
elif response.status_code == 500 and error_count < 5:
time.sleep(1)
error_count += 1
else:
print("API Error:", response.status_code)
raise Exception(f"API Error: {response.status_code}")
iface = gr.Interface(
fn=generate_image,
inputs=gr.Textbox(lines=2, placeholder="Describe the subject here..."),
outputs="image",
title="LineArt XL Image Generator",
description=(
"Powered by the generous GPU time from Redmond.AI, this LORA, fine-tuned on SD XL 1.0, excels at creating Lineart-themed images across a wide range of subjects. "
"Optimized for 1024x1024 resolution, it incorporates the specific tag 'lineart,LineAniAF' directly in the HF Space for ease of use. "
"If you appreciate this model and wish to support, consider a donation via [Patreon](https://www.patreon.com/user?u=81570187) or [Ko-fi](https://ko-fi.com/artificialguybr). "
"Stay updated on new models by following on [Twitter](https://twitter.com/artificialguybr)."
),
examples=[
["a soaring eagle"],
["a running cheetah"],
["a majestic oak tree"]
]
)
print("Launching Gradio interface...")
iface.launch() |