import os import subprocess import streamlit as st from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer, AutoModel, RagRetriever, AutoModelForSeq2SeqLM import black from pylint import lint from io import StringIO import sys import torch from huggingface_hub import hf_hub_url, cached_download, HfApi from datetime import datetime # Set your Hugging Face API key here hf_token = "YOUR_HUGGING_FACE_API_KEY" # Replace with your actual token HUGGING_FACE_REPO_URL = "https://huggingface.co/spaces/acecalisto3/DevToolKit" PROJECT_ROOT = "projects" AGENT_DIRECTORY = "agents" # Global state to manage communication between Tool Box and Workspace Chat App if 'chat_history' not in st.session_state: st.session_state.chat_history = [] if 'terminal_history' not in st.session_state: st.session_state.terminal_history = [] if 'workspace_projects' not in st.session_state: st.session_state.workspace_projects = {} if 'available_agents' not in st.session_state: st.session_state.available_agents = [] if 'current_state' not in st.session_state: st.session_state.current_state = { 'toolbox': {}, 'workspace_chat': {} } # List of top downloaded free code-generative models from Hugging Face Hub AVAILABLE_CODE_GENERATIVE_MODELS = [ "bigcode/starcoder", # Popular and powerful "Salesforce/codegen-350M-mono", # Smaller, good for quick tasks "microsoft/CodeGPT-small", # Smaller, good for quick tasks "google/flan-t5-xl", # Powerful, good for complex tasks "facebook/bart-large-cnn", # Good for text-to-code tasks ] # Load pre-trained RAG retriever rag_retriever = RagRetriever.from_pretrained("facebook/rag-token-base") # Use a Hugging Face RAG model # Load pre-trained chat model chat_model = AutoModelForSeq2SeqLM.from_pretrained("microsoft/DialoGPT-medium") # Use a Hugging Face chat model # Load tokenizer tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium") # Place the CSS here st.markdown(""" """, unsafe_allow_html=True) class AIAgent: def __init__(self, name, description, skills, hf_api=None): self.name = name self.description = description self.skills = skills self._hf_api = hf_api self._hf_token = hf_token # Store the token here @property def hf_api(self): if not self._hf_api and self.has_valid_hf_token(): self._hf_api = HfApi(token=self._hf_token) return self._hf_api def has_valid_hf_token(self): return bool(self._hf_token) async def autonomous_build(self, chat_history, workspace_projects, project_name, selected_model, hf_token): self._hf_token = hf_token # Continuation of previous methods def deploy_built_space_to_hf(self): if not self._hf_api or not self._hf_token: raise ValueError("Cannot deploy the Space since no valid Hugging Face API connection was established.") repository_name = f"my-awesome-space_{datetime.now().timestamp()}" files = get_built_space_files() commit_response = self.hf_api.commit_repo( repo_id=repository_name, branch="main", commits=[{"message": "Built Space Commit", "tree": tree_payload}] ) print("Commit successful:", commit_response) self.publish_space(repository_name) def publish_space(self, repository_name): publishing_response = self.hf_api.create_model_version( model_name=repository_name, repo_id=repository_name, model_card={}, library_card={} ) print("Space published:", publishing_response) def process_input(user_input): # Input pipeline: Tokenize and preprocess user input input_ids = tokenizer(user_input, return_tensors="pt").input_ids attention_mask = tokenizer(user_input, return_tensors="pt").attention_mask # RAG model: Generate response with torch.no_grad(): output = rag_retriever(input_ids, attention_mask=attention_mask) response = output.generator_outputs[0].sequences[0] # Chat model: Refine response chat_input = tokenizer(response, return_tensors="pt") chat_input["input_ids"] = chat_input["input_ids"].unsqueeze(0) chat_input["attention_mask"] = chat_input["attention_mask"].unsqueeze(0) with torch.no_grad(): chat_output = chat_model(**chat_input) refined_response = chat_output.sequences[0] # Output pipeline: Return final response return refined_response def workspace_interface(project_name): project_path = os.path.join(PROJECT_ROOT, project_name) if not os.path.exists(project_path): os.makedirs(project_path) st.session_state.workspace_projects[project_name] = {'files': []} return f"Project '{project_name}' created successfully." else: return f"Project '{project_name}' already exists." def add_code_to_workspace(project_name, code, file_name): project_path = os.path.join(PROJECT_ROOT, project_name) if not os.path.exists(project_path): return f"Project '{project_name}' does not exist." file_path = os.path.join(project_path, file_name) with open(file_path, "w") as file: file.write(code) st.session_state.workspace_projects[project_name]['files'].append(file_name) return f"Code added to '{file_name}' in project '{project_name}'." def run_code(command, project_name=None): if project_name: project_path = os.path.join(PROJECT_ROOT, project_name) result = subprocess.run(command, shell=True, capture_output=True, text=True, cwd=project_path) else: result = subprocess.run(command, shell=True, capture_output=True, text=True) return result.stdout def display_chat_history(history): chat_history = "" for user_input, response in history: chat_history += f"User: {user_input}\nAgent: {response}\n\n" return chat_history def display_workspace_projects(projects): workspace_projects = "" for project, details in projects.items(): workspace_projects += f"Project: {project}\nFiles:\n" for file in details['files']: workspace_projects += f" - {file}\n" return workspace_projects # Streamlit App st.title("AI Agent Creator") # Sidebar navigation st.sidebar.title("Navigation") app_mode = st.sidebar.selectbox("Choose the app mode", ["AI Agent Creator", "Tool Box", "Workspace Chat App"]) if app_mode == "AI Agent Creator": # AI Agent Creator st.header("Create an AI Agent from Text") st.subheader("From Text") agent_name = st.text_input("Enter agent name:") text_input = st.text_area("Enter skills (one per line):") if st.button("Create Agent"): skills = text_input.split('\n') agent = AIAgent(agent_name, "AI agent created from text input", skills) st.success(f"Agent '{agent_name}' created and saved successfully.") st.session_state.available_agents.append(agent_name) elif app_mode == "Tool Box": # Tool Box st.header("AI-Powered Tools") # Chat Interface st.subheader("Chat with CodeCraft") chat_input = st.text_area("Enter your message:") if st.button("Send"): response = process_input(chat_input) st.session_state.chat_history.append((chat_input, response)) st.write(f"CodeCraft: {response}") # Terminal Interface st.subheader("Terminal") terminal_input = st.text_input("Enter a command:") if st.button("Run"): output = run_code(terminal_input) st.session_state.terminal_history.append((terminal_input, output)) st.code(output, language="bash") # Project Management st.subheader("Project Management") project_name_input = st.text_input("Enter Project Name:") if st.button("Create Project"): status = workspace_interface(project_name_input) st.write(status) code_to_add = st.text_area("Enter Code to Add to Workspace:", height=150) file_name_input = st.text_input("Enter File Name (e.g., 'app.py'):") if st.button("Add Code"): status = add_code_to_workspace(project_name_input, code_to_add, file_name_input) st.write(status) # Display Chat History st.subheader("Chat History") chat_history = display_chat_history(st.session_state.chat_history) st.text_area("Chat History", value=chat_history, height=200) # Display Workspace Projects st.subheader("Workspace Projects") workspace_projects = display_workspace_projects(st.session_state.workspace_projects) st.text_area("Workspace Projects", value=workspace_projects, height=200) elif app_mode == "Workspace Chat App": # Workspace Chat App st.header("Workspace Chat App") # Chat Interface with AI Agents st.subheader("Chat with AI Agents") selected_agent = st.selectbox("Select an AI agent", st.session_state.available_agents) agent_chat_input = st.text_area("Enter your message for the agent:") if st.button("Send to Agent"): response = process_input(agent_chat_input) st.session_state.chat_history.append((agent_chat_input, response)) st.write(f"{selected_agent}: {response}") # Code Generation st.subheader("Code Generation") code_idea = st.text_input("Enter your code idea:") selected_model = st.selectbox("Select a code-generative model", AVAILABLE_CODE_GENERATIVE_MODELS) if st.button("Generate Code"): generated_code = run_code(code_idea) st.code(generated_code, language="python") # Automate Build Process st.subheader("Automate Build Process") if st.button("Automate"): agent = AIAgent(selected_agent, "", []) # Load the agent without skills for now summary, next_step = agent.autonomous_build(st.session_state.chat_history, st.session_state.workspace_projects, project_name, selected_model, hf_token) st.write("Autonomous Build Summary:") st.write(summary) st.write("Next Step:") st.write(next_step) if agent._hf_api and agent.has_valid_hf_token(): repository = agent.deploy_built_space_to_hf() st.markdown("## Congratulations! Successfully deployed Space 🚀 ##") st.markdown("[Check out your new Space here](hf.co/" + repository.name + ")") if __name__ == "__main__": st.sidebar.title("Navigation") app_mode = st.sidebar.selectbox("Choose the app mode", ["AI Agent Creator", "Tool Box", "Workspace Chat App"]) if app_mode == "AI Agent Creator": # AI Agent Creator st.header("Create an AI Agent from Text") st.subheader("From Text") agent_name = st.text_input("Enter agent name:") text_input = st.text_area("Enter skills (one per line):") if st.button("Create Agent"): skills = text_input.split('\n') agent = AIAgent(agent_name, "AI agent created from text input", skills) st.success(f"Agent '{agent_name}' created and saved successfully.") st.session_state.available_agents.append(agent_name) elif app_mode == "Tool Box": # Tool Box st.header("AI-Powered Tools") # Chat Interface st.subheader("Chat with CodeCraft") chat_input = st.text_area("Enter your message:") if st.button("Send"): response = process_input(chat_input) st.session_state.chat_history.append((chat_input, response)) st.write(f"CodeCraft: {response}") # Terminal Interface st.subheader("Terminal") terminal_input = st.text_input("Enter a command:") if st.button("Run"): output = run_code(terminal_input) st.session_state.terminal_history.append((terminal_input, output)) st.code(output, language="bash") # Project Management st.subheader("Project Management") project_name_input = st.text_input("Enter Project Name:") if st.button("Create Project"): status = workspace_interface(project_name_input) st.write(status) code_to_add = st.text_area("Enter Code to Add to Workspace:", height=150) file_name_input = st.text_input("Enter File Name (e.g., 'app.py'):") if st.button("Add Code"): status = add_code_to_workspace(project_name_input, code_to_add, file_name_input) st.write(status) # Display Chat History st.subheader("Chat History") chat_history = display_chat_history(st.session_state.chat_history) st.text_area("Chat History", value=chat_history, height=200) # Display Workspace Projects st.subheader("Workspace Projects") workspace_projects = display_workspace_projects(st.session_state.workspace_projects) st.text_area("Workspace Projects", value=workspace_projects, height=200) elif app_mode == "Workspace Chat App": # Workspace Chat App st.header("Workspace Chat App") # Chat Interface with AI Agents st.subheader("Chat with AI Agents") selected_agent = st.selectbox("Select an AI agent", st.session_state.available_agents) agent_chat_input = st.text_area("Enter your message for the agent:") if st.button("Send to Agent"): response = process_input(agent_chat_input) st.session_state.chat_history.append((agent_chat_input, response)) st.write(f"{selected_agent}: {response}") # Code Generation st.subheader("Code Generation") code_idea = st.text_input("Enter your code idea:") selected_model = st.selectbox("Select a code-generative model", AVAILABLE_CODE_GENERATIVE_MODELS) if st.button("Generate Code"): generated_code = run_code(code_idea) st.code(generated_code, language="python") # Automate Build Process st.subheader("Automate Build Process") if st.button("Automate"): agent = AIAgent(selected_agent, "", []) # Load the agent without skills for now summary, next_step = agent.autonomous_build(st.session_state.chat_history, st.session_state.workspace_projects, project_name, selected_model, hf_token) st.write("Autonomous Build Summary:") st.write(summary) st.write("Next Step:") st.write(next_step) if agent._hf_api and agent.has_valid_hf_token(): repository = agent.deploy_built_space_to_hf() st.markdown("## Congratulations! Successfully deployed Space 🚀 ##") st.markdown("[Check out your new Space here](hf.co/" + repository.name + ")") # Launch the Streamlit app st.markdown(""" """, unsafe_allow_html=True)