Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
import os
|
| 2 |
-
import subprocess
|
| 3 |
import streamlit as st
|
|
|
|
| 4 |
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer, AutoModel, RagRetriever, AutoModelForSeq2SeqLM
|
| 5 |
import black
|
| 6 |
from pylint import lint
|
|
@@ -8,9 +8,12 @@ from io import StringIO
|
|
| 8 |
import sys
|
| 9 |
import torch
|
| 10 |
from huggingface_hub import hf_hub_url, cached_download, HfApi
|
|
|
|
| 11 |
|
| 12 |
# Set your Hugging Face API key here
|
| 13 |
-
hf_token = "YOUR_HUGGING_FACE_API_KEY" # Replace with your actual token
|
|
|
|
|
|
|
| 14 |
|
| 15 |
HUGGING_FACE_REPO_URL = "https://huggingface.co/spaces/acecalisto3/DevToolKit"
|
| 16 |
PROJECT_ROOT = "projects"
|
|
@@ -71,24 +74,25 @@ def process_input(user_input):
|
|
| 71 |
return refined_response
|
| 72 |
|
| 73 |
class AIAgent:
|
| 74 |
-
def __init__(self, name, description, skills):
|
| 75 |
self.name = name
|
| 76 |
self.description = description
|
| 77 |
self.skills = skills
|
|
|
|
|
|
|
| 78 |
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
return
|
| 87 |
|
| 88 |
-
def autonomous_build(self, chat_history, workspace_projects, project_name, selected_model):
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
"""
|
| 92 |
summary = "Chat History:\n" + "\n".join([f"User: {u}\nAgent: {a}" for u, a in chat_history])
|
| 93 |
summary += "\n\nWorkspace Projects:\n" + "\n".join([f"{p}: {details}" for p, details in workspace_projects.items()])
|
| 94 |
|
|
@@ -139,6 +143,30 @@ I am confident that I can leverage my expertise to assist you in developing and
|
|
| 139 |
st.error(f"Build Error: {e}")
|
| 140 |
|
| 141 |
return summary, next_step
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 142 |
|
| 143 |
def save_agent_to_file(agent):
|
| 144 |
"""Saves the agent's prompt to a file."""
|
|
@@ -280,6 +308,31 @@ def add_code_to_workspace(project_name, code, file_name):
|
|
| 280 |
st.session_state.workspace_projects[project_name]['files'].append(file_name)
|
| 281 |
return f"Code added to '{file_name}' in project '{project_name}'."
|
| 282 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 283 |
# Streamlit App
|
| 284 |
st.title("AI Agent Creator")
|
| 285 |
|
|
@@ -363,7 +416,56 @@ elif app_mode == "Tool Box":
|
|
| 363 |
elif app_mode == "Workspace Chat App":
|
| 364 |
# Workspace Chat App
|
| 365 |
st.header("Workspace Chat App")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 366 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 367 |
# Project Workspace Creation
|
| 368 |
st.subheader("Create a New Project")
|
| 369 |
project_name = st.text_input("Enter project name:")
|
|
@@ -456,7 +558,19 @@ elif app_mode == "Workspace Chat App":
|
|
| 456 |
st.write(summary)
|
| 457 |
st.write("Next Step:")
|
| 458 |
st.write(next_step)
|
| 459 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 460 |
# Use the hf_token to interact with the Hugging Face API
|
| 461 |
api = HfApi(token=hf_token)
|
| 462 |
# Function to create a Space on Hugging Face
|
|
|
|
| 1 |
import os
|
|
|
|
| 2 |
import streamlit as st
|
| 3 |
+
import subprocess
|
| 4 |
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer, AutoModel, RagRetriever, AutoModelForSeq2SeqLM
|
| 5 |
import black
|
| 6 |
from pylint import lint
|
|
|
|
| 8 |
import sys
|
| 9 |
import torch
|
| 10 |
from huggingface_hub import hf_hub_url, cached_download, HfApi
|
| 11 |
+
import base64
|
| 12 |
|
| 13 |
# Set your Hugging Face API key here
|
| 14 |
+
# hf_token = "YOUR_HUGGING_FACE_API_KEY" # Replace with your actual token
|
| 15 |
+
# Get Hugging Face token from secrets.toml - this line should already be in the main code
|
| 16 |
+
hf_token = st.secrets["huggingface"]["hf_token"]
|
| 17 |
|
| 18 |
HUGGING_FACE_REPO_URL = "https://huggingface.co/spaces/acecalisto3/DevToolKit"
|
| 19 |
PROJECT_ROOT = "projects"
|
|
|
|
| 74 |
return refined_response
|
| 75 |
|
| 76 |
class AIAgent:
|
| 77 |
+
def __init__(self, name, description, skills, hf_api=None):
|
| 78 |
self.name = name
|
| 79 |
self.description = description
|
| 80 |
self.skills = skills
|
| 81 |
+
self._hf_api = hf_api
|
| 82 |
+
self._hf_token = hf_token # Store the token here
|
| 83 |
|
| 84 |
+
@property
|
| 85 |
+
def hf_api(self):
|
| 86 |
+
if not self._hf_api and self.has_valid_hf_token():
|
| 87 |
+
self._hf_api = HfApi(token=self._hf_token)
|
| 88 |
+
return self._hf_api
|
| 89 |
+
|
| 90 |
+
def has_valid_hf_token(self):
|
| 91 |
+
return bool(self._hf_token)
|
| 92 |
|
| 93 |
+
async def autonomous_build(self, chat_history, workspace_projects, project_name, selected_model, hf_token):
|
| 94 |
+
self._hf_token = hf_token
|
| 95 |
+
# Continuation of previous methods
|
|
|
|
| 96 |
summary = "Chat History:\n" + "\n".join([f"User: {u}\nAgent: {a}" for u, a in chat_history])
|
| 97 |
summary += "\n\nWorkspace Projects:\n" + "\n".join([f"{p}: {details}" for p, details in workspace_projects.items()])
|
| 98 |
|
|
|
|
| 143 |
st.error(f"Build Error: {e}")
|
| 144 |
|
| 145 |
return summary, next_step
|
| 146 |
+
|
| 147 |
+
def deploy_built_space_to_hf(self):
|
| 148 |
+
if not self._hf_api or not self._hf_token:
|
| 149 |
+
raise ValueError("Cannot deploy the Space since no valid Hugoging Face API connection was established.")
|
| 150 |
+
|
| 151 |
+
# Assuming you have a function to get the files for your Space
|
| 152 |
+
repository_name = f"my-awesome-space_{datetime.now().timestamp()}"
|
| 153 |
+
files = get_built_space_files() # Placeholder - you'll need to define this function
|
| 154 |
+
|
| 155 |
+
# Create the Space
|
| 156 |
+
create_space(self.hf_api, repository_name, "Description", True, files)
|
| 157 |
+
|
| 158 |
+
st.markdown("## Congratulations! Successfully deployed Space 🚀 ##")
|
| 159 |
+
st.markdown(f"[Check out your new Space here](https://huggingface.co/spaces/{repository_name})")
|
| 160 |
+
|
| 161 |
+
|
| 162 |
+
# Add any missing functions from your original code (e.g., get_built_space_files)
|
| 163 |
+
def get_built_space_files():
|
| 164 |
+
# Replace with your logic to gather the files you want to deploy
|
| 165 |
+
return {
|
| 166 |
+
"app.py": "# Your Streamlit app code here",
|
| 167 |
+
"requirements.txt": "streamlit\ntransformers"
|
| 168 |
+
# Add other files as needed
|
| 169 |
+
}
|
| 170 |
|
| 171 |
def save_agent_to_file(agent):
|
| 172 |
"""Saves the agent's prompt to a file."""
|
|
|
|
| 308 |
st.session_state.workspace_projects[project_name]['files'].append(file_name)
|
| 309 |
return f"Code added to '{file_name}' in project '{project_name}'."
|
| 310 |
|
| 311 |
+
def create_space(api, name, description, public, files, entrypoint="launch.py"):
|
| 312 |
+
url = f"{hf_hub_url()}spaces/{name}/prepare-repo"
|
| 313 |
+
headers = {"Authorization": f"Bearer {api.access_token}"}
|
| 314 |
+
payload = {
|
| 315 |
+
"public": public,
|
| 316 |
+
"gitignore_template": "web",
|
| 317 |
+
"default_branch": "main",
|
| 318 |
+
"archived": False,
|
| 319 |
+
"files": []
|
| 320 |
+
}
|
| 321 |
+
for filename, contents in files.items():
|
| 322 |
+
data = {
|
| 323 |
+
"content": contents,
|
| 324 |
+
"path": filename,
|
| 325 |
+
"encoding": "utf-8",
|
| 326 |
+
"mode": "overwrite" if "#\{random.randint(0, 1)\}" not in contents else "merge",
|
| 327 |
+
}
|
| 328 |
+
payload["files"].append(data)
|
| 329 |
+
response = requests.post(url, json=payload, headers=headers)
|
| 330 |
+
response.raise_for_status()
|
| 331 |
+
location = response.headers.get("Location")
|
| 332 |
+
# wait_for_processing(location, api) # You might need to implement this if it's not already defined
|
| 333 |
+
|
| 334 |
+
return Repository(name=name, api=api)
|
| 335 |
+
|
| 336 |
# Streamlit App
|
| 337 |
st.title("AI Agent Creator")
|
| 338 |
|
|
|
|
| 416 |
elif app_mode == "Workspace Chat App":
|
| 417 |
# Workspace Chat App
|
| 418 |
st.header("Workspace Chat App")
|
| 419 |
+
def get_built_space_files():
|
| 420 |
+
"""
|
| 421 |
+
Gathers the necessary files for the Hugging Face Space,
|
| 422 |
+
handling different project structures and file types.
|
| 423 |
+
"""
|
| 424 |
+
files = {}
|
| 425 |
+
|
| 426 |
+
# Get the current project name (adjust as needed)
|
| 427 |
+
project_name = st.session_state.get('project_name', 'my_project')
|
| 428 |
+
project_path = os.path.join(PROJECT_ROOT, project_name)
|
| 429 |
|
| 430 |
+
# Define a list of files/directories to search for
|
| 431 |
+
targets = [
|
| 432 |
+
"app.py",
|
| 433 |
+
"requirements.txt",
|
| 434 |
+
"Dockerfile",
|
| 435 |
+
"docker-compose.yml", # Example YAML file
|
| 436 |
+
"src", # Example subdirectory
|
| 437 |
+
"assets" # Another example subdirectory
|
| 438 |
+
]
|
| 439 |
+
|
| 440 |
+
# Iterate through the targets
|
| 441 |
+
for target in targets:
|
| 442 |
+
target_path = os.path.join(project_path, target)
|
| 443 |
+
|
| 444 |
+
# If the target is a file, add it to the files dictionary
|
| 445 |
+
if os.path.isfile(target_path):
|
| 446 |
+
add_file_to_dictionary(files, target_path)
|
| 447 |
+
|
| 448 |
+
# If the target is a directory, recursively search for files within it
|
| 449 |
+
elif os.path.isdir(target_path):
|
| 450 |
+
for root, _, filenames in os.walk(target_path):
|
| 451 |
+
for filename in filenames:
|
| 452 |
+
file_path = os.path.join(root, filename)
|
| 453 |
+
add_file_to_dictionary(files, file_path)
|
| 454 |
+
|
| 455 |
+
return files
|
| 456 |
+
|
| 457 |
+
def add_file_to_dictionary(files, file_path):
|
| 458 |
+
"""Helper function to add a file to the files dictionary."""
|
| 459 |
+
filename = os.path.relpath(file_path, PROJECT_ROOT) # Get relative path
|
| 460 |
+
|
| 461 |
+
# Handle text and binary files
|
| 462 |
+
if filename.endswith((".py", ".txt", ".json", ".html", ".css", ".yml", ".yaml")):
|
| 463 |
+
with open(file_path, "r") as f:
|
| 464 |
+
files[filename] = f.read()
|
| 465 |
+
else:
|
| 466 |
+
with open(file_path, "rb") as f:
|
| 467 |
+
file_content = f.read()
|
| 468 |
+
files[filename] = base64.b64encode(file_content).decode("utf-8")
|
| 469 |
# Project Workspace Creation
|
| 470 |
st.subheader("Create a New Project")
|
| 471 |
project_name = st.text_input("Enter project name:")
|
|
|
|
| 558 |
st.write(summary)
|
| 559 |
st.write("Next Step:")
|
| 560 |
st.write(next_step)
|
| 561 |
+
|
| 562 |
+
# Using the modified and extended class and functions, update the callback for the 'Automate' button in the Streamlit UI:
|
| 563 |
+
if st.button("Automate", args=(hf_token,)):
|
| 564 |
+
agent = AIAgent(selected_agent, "", []) # Load the agent without skills for now
|
| 565 |
+
summary, next_step = agent.autonomous_build(st.session_state.chat_history, st.session_state.workspace_projects, project_name, selected_model, hf_token)
|
| 566 |
+
st.write("Autonomous Build Summary:")
|
| 567 |
+
st.write(summary)
|
| 568 |
+
st.write("Next Step:")
|
| 569 |
+
st.write(next_step)
|
| 570 |
+
|
| 571 |
+
# If everything went well, proceed to deploy the Space
|
| 572 |
+
if agent._hf_api and agent.has_valid_hf_token():
|
| 573 |
+
agent.deploy_built_space_to_hf()
|
| 574 |
# Use the hf_token to interact with the Hugging Face API
|
| 575 |
api = HfApi(token=hf_token)
|
| 576 |
# Function to create a Space on Hugging Face
|