DevToolKit / app.py
acecalisto3's picture
Update app.py
2637490 verified
raw
history blame
16.2 kB
import os
import subprocess
import sys
import streamlit as st
import black
from pylint import lint
from io import StringIO
import requests
import logging
import atexit
import time
from datetime import datetime
# Import the InstructModel from the appropriate library
from mistralai import InstructModel # Ensure you have the correct import for the model
HUGGING_FACE_REPO_URL = "https://huggingface.co/spaces/acecalisto3/DevToolKit"
PROJECT_ROOT = "projects"
AGENT_DIRECTORY = "agents"
# Global state to manage communication between Tool Box and Workspace Chat App
if 'chat_history' not in st.session_state:
st.session_state.chat_history = []
if 'terminal_history' not in st.session_state:
st.session_state.terminal_history = []
if 'workspace_projects' not in st.session_state:
st.session_state.workspace_projects = {}
if 'available_agents' not in st.session_state:
st.session_state.available_agents = []
if 'current_state' not in st.session_state:
st.session_state.current_state = {
'toolbox': {},
'workspace_chat': {}
}
class InstructModel:
def __init__(self):
"""Initialize the Mixtral-8x7B-Instruct model"""
try:
self.model_name = "mistralai/Mixtral-8x7B-Instruct-v0.1"
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
self.model = AutoModelForCausalLM.from_pretrained(
self.model_name,
torch_dtype=torch.float16,
device_map="auto"
)
except Exception as e:
raise EnvironmentError(f"Failed to load model: {str(e)}")
def generate_response(self, prompt: str) -> str:
"""Generate a response using the Mixtral model"""
try:
# Format the prompt according to Mixtral's expected format
formatted_prompt = f"<s>[INST] {prompt} [/INST]"
# Tokenize input
inputs = self.tokenizer(formatted_prompt, return_tensors="pt").to(self.model.device)
# Generate response
outputs = self.model.generate(
inputs.input_ids,
max_new_tokens=512,
temperature=0.7,
top_p=0.95,
do_sample=True,
pad_token_id=self.tokenizer.eos_token_id
)
# Decode and clean up response
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
# Remove the prompt from the response
response = response.replace(formatted_prompt, "").strip()
return response
except Exception as e:
raise Exception(f"Error generating response: {str(e)}")
def __del__(self):
"""Cleanup when the model is no longer needed"""
try:
del self.model
del self.tokenizer
torch.cuda.empty_cache()
except:
pass
class AIAgent:
def __init__(self, name, description, skills):
self.name = name
self.description = description
self.skills = skills
def create_agent_prompt(self):
skills_str = '\n'.join([f"* {skill}" for skill in self.skills])
agent_prompt = f"""
As an elite expert developer, my name is {self.name}. I possess a comprehensive understanding of the following areas:
{skills_str}
I am confident that I can leverage my expertise to assist you in developing and deploying cutting-edge web applications. Please feel free to ask any questions or present any challenges you may encounter.
"""
return agent_prompt
def autonomous_build(self, chat_history, workspace_projects):
summary = "Chat History:\n" + "\n".join([f":User {u}\nAgent: {a}" for u, a in chat_history])
summary += "\n\nWorkspace Projects:\n" + "\n".join([f"{p}: {details}" for p, details in workspace_projects.items()])
next_step = "Based on the current state, the next logical step is to implement the main application logic."
return summary, next_step
def save_agent_to_file(agent):
if not os.path.exists(AGENT_DIRECTORY):
os.makedirs(AGENT_DIRECTORY)
file_path = os.path.join(AGENT_DIRECTORY, f"{agent.name}.txt")
config_path = os.path.join(AGENT_DIRECTORY, f"{agent.name}Config.txt")
with open(file_path, "w") as file:
file.write(agent.create_agent_prompt())
with open(config_path, "w") as file:
file.write(f"Agent Name: {agent.name}\nDescription: {agent.description}")
st.session_state.available_agents.append(agent.name)
commit_and_push_changes(f"Add agent {agent.name}")
def load_agent_prompt(agent_name):
file_path = os.path.join(AGENT_DIRECTORY, f"{agent_name}.txt")
if os.path.exists(file_path):
with open(file_path, "r") as file:
agent_prompt = file.read()
return agent_prompt
else:
return None
def create_agent_from_text(name, text):
skills = text.split('\n')
agent = AIAgent(name, "AI agent created from text input.", skills)
save_agent_to_file(agent)
return agent.create_agent_prompt()
def chat_interface(input_text):
"""Handles chat interactions without a specific agent."""
try:
model = InstructModel() # Initialize the Mixtral Instruct model
response = model.generate_response(f":User {input_text}\nAI:")
return response
except EnvironmentError as e:
return f"Error communicating with AI: {e}"
def chat_interface_with_agent(input_text, agent_name):
agent_prompt = load_agent_prompt(agent_name)
if agent_prompt is None:
return f"Agent {agent_name} not found."
try:
model = InstructModel() # Initialize Mixtral Instruct model
except EnvironmentError as e:
return f"Error loading model: {e}"
combined_input = f"{agent_prompt}\n\n:User {input_text}\nAgent:"
response = model.generate_response(combined_input)
return response
def workspace_interface(project_name):
project_path = os.path.join(PROJECT_ROOT, project_name)
if not os.path.exists(PROJECT_ROOT):
os.makedirs(PROJECT_ROOT)
if not os.path.exists(project_path):
os.makedirs(project_path)
st.session_state.workspace_projects[project_name] = {"files": []}
st.session_state.current_state['workspace_chat']['project_name'] = project_name
commit_and_push_changes(f"Create project {project_name}")
return f"Project {project_name} created successfully."
else:
return f"Project {project_name} already exists."
def add_code_to_workspace(project_name, code, file_name):
project_path = os.path.join(PROJECT_ROOT, project_name)
if os.path.exists(project_path):
file_path = os.path.join(project_path, file_name)
with open(file_path, "w") as file:
file.write(code)
st.session_state.workspace_projects[project_name]["files"].append(file_name)
st.session_state.current_state['workspace_chat']['added_code'] = {"file_name": file_name, "code": code}
commit_and_push_changes(f"Add code to {file_name} in project {project_name}")
return f"Code added to {file_name} in project {project_name} successfully."
else:
return f"Project {project_name} does not exist."
def terminal_interface(command, project_name=None):
if project_name:
project_path = os.path.join(PROJECT_ROOT, project_name)
if not os.path.exists(project_path):
return f"Project {project_name} does not exist."
result = subprocess.run(command, cwd=project_path, shell=True, capture_output=True, text=True)
else:
result = subprocess.run(command, shell=True, capture_output=True, text=True)
if result.returncode == 0:
st.session_state.current_state['toolbox']['terminal_output'] = result.stdout
return result.stdout
else:
st.session_state.current_state['toolbox']['terminal_output'] = result.stderr
return result.stderr
def code_editor_interface(code):
try:
formatted_code = black.format_str(code, mode=black.FileMode())
except black.NothingChanged:
formatted_code = code
except Exception as e:
return None, f"Error formatting code with black: {e}"
result = StringIO()
sys.stdout = result
sys.stderr = result
try:
(pylint_stdout, pylint_stderr) = lint.py_run(code, return_std=True)
lint_message = pylint_stdout.getvalue() + pylint_stderr.getvalue()
except Exception as e:
return None, f"Error linting code with pylint: {e}"
finally:
sys.stdout = sys.__stdout__
sys.stderr = sys.__stderr__
return formatted_code, lint_message
def translate_code(code, input_language, output_language):
try:
model = InstructModel()
prompt = f"Translate the following {input_language} code to {output_language}:\n\n{code}"
translated_code = model.generate_response(prompt)
return translated_code
except EnvironmentError as e:
return f"Error loading model or translating code: {e}"
except Exception as e:
return f"An unexpected error occurred during code translation: {e}"
def generate_code(code_idea):
try:
model = InstructModel() # Initialize Mixtral Instruct model
except EnvironmentError as e:
return f"Error loading model: {e}"
prompt = f"Generate code for the following idea:\n\n{code_idea}"
generated_code = model.generate_response(prompt)
st.session_state.current_state['toolbox']['generated_code'] = generated_code
return generated_code
def commit_and_push_changes(commit_message):
"""Commits and pushes changes to the Hugging Face repository (needs improvement)."""
try:
subprocess.run(["git", "add", "."], check=True, capture_output=True, text=True)
subprocess.run(["git", "commit", "-m", commit_message], check=True, capture_output=True, text=True)
subprocess.run(["git", "push"], check=True, capture_output=True, text=True)
except subprocess.CalledProcessError as e:
st.error(f"Git command failed: {e.stderr}")
except FileNotFoundError:
st.error("Git not found. Please ensure Git is installed and configured.")
# Streamlit App
st.title("AI Agent Creator")
# Sidebar navigation
st.sidebar.title("Navigation")
app_mode = st.sidebar.selectbox("Choose the app mode", ["AI Agent Creator", "Tool Box", "Workspace Chat App"])
if app_mode == "AI Agent Creator":
# AI Agent Creator
st.header("Create an AI Agent from Text")
st.subheader("From Text")
agent_name = st.text_input("Enter agent name:")
text_input = st.text_area("Enter skills (one per line):")
if st.button("Create Agent"):
agent_prompt = create_agent_from_text(agent_name, text_input)
st.success(f"Agent '{agent_name}' created and saved successfully.")
st.session_state.available_agents.append(agent_name)
elif app_mode == "Tool Box":
# Tool Box
st.header("AI-Powered Tools")
# Chat Interface
st.subheader("Chat with CodeCraft")
chat_input = st.text_area("Enter your message:")
if st.button("Send"):
if chat_input.startswith("@"):
agent_name = chat_input.split(" ")[0][1:] # Extract agent_name from @agent_name
chat_input = " ".join(chat_input.split(" ")[1:]) # Remove agent_name from input
chat_response = chat_interface_with_agent(chat_input, agent_name)
else:
chat_response = chat_interface(chat_input)
st.session_state.chat_history.append((chat_input, chat_response))
st.write(f"CodeCraft: {chat_response}")
# Terminal Interface
st.subheader("Terminal")
terminal_input = st.text_input("Enter a command:")
if st.button("Run"):
terminal_output = terminal_interface(terminal_input)
st.session_state.terminal_history.append((terminal_input, terminal_output))
st.code(terminal_output, language="bash")
# Code Editor Interface
st.subheader("Code Editor")
code_editor = st.text_area("Write your code:", height=300)
if st.button("Format & Lint"):
formatted_code, lint_message = code_editor_interface(code_editor)
st.code(formatted_code, language="python")
st.info(lint_message)
# Text Translation Tool (Code Translation)
st.subheader("Translate Code")
code_to_translate = st.text_area("Enter code to translate:")
source_language = st.text_input("Enter source language (e.g., 'Python'):")
target_language = st.text_input("Enter target language (e.g., 'JavaScript'):")
if st.button("Translate Code"):
translated_code = translate_code(code_to_translate, source_language, target_language)
st.code(translated_code, language=target_language.lower())
# Code Generation
st.subheader("Code Generation")
code_idea = st.text_input("Enter your code idea:")
if st.button("Generate Code"):
generated_code = generate_code(code_idea)
st.code(generated_code, language="python")
elif app_mode == "Workspace Chat App":
# Workspace Chat App
st.header("Workspace Chat App")
# Project Workspace Creation
st.subheader("Create a New Project")
project_name = st.text_input("Enter project name:")
if st.button("Create Project"):
workspace_status = workspace_interface(project_name)
st.success(workspace_status)
# Add Code to Workspace
st.subheader("Add Code to Workspace")
code_to_add = st.text_area("Enter code to add to workspace:")
file_name = st.text_input("Enter file name (e.g., 'app.py'):")
if st.button("Add Code"):
add_code_status = add_code_to_workspace(project_name, code_to_add, file_name)
st.success(add_code_status)
# Terminal Interface with Project Context
st.subheader("Terminal (Workspace Context)")
terminal_input = st.text_input("Enter a command within the workspace:")
if st.button("Run Command"):
terminal_output = terminal_interface(terminal_input, project_name)
st.code(terminal_output, language="bash")
# Chat Interface for Guidance
st.subheader("Chat with CodeCraft for Guidance")
chat_input = st.text_area("Enter your message for guidance:")
if st.button("Get Guidance"):
chat_response = chat_interface(chat_input)
st.session_state.chat_history.append((chat_input, chat_response))
st.write(f"CodeCraft: {chat_response}")
# Display Chat History
st.subheader("Chat History")
for user_input, response in st.session_state.chat_history:
st.write(f":User {user_input}")
st.write(f"CodeCraft: {response}")
# Display Terminal History
st.subheader("Terminal History")
for command, output in st.session_state.terminal_history:
st.write(f"Command: {command}")
st.code(output, language="bash")
# Display Projects and Files
st.subheader("Workspace Projects")
for project, details in st.session_state.workspace_projects.items():
st.write(f"Project: {project }")
for file in details['files']:
st.write(f" - {file}")
# Chat with AI Agents
st.subheader("Chat with AI Agents")
selected_agent = st.selectbox("Select an AI agent", st.session_state.available_agents)
agent_chat_input = st.text_area("Enter your message for the agent:")
if st.button("Send to Agent"):
agent_chat_response = chat_interface_with_agent(agent_chat_input, selected_agent)
st.session_state.chat_history.append((agent_chat_input, agent_chat_response))
st.write(f"{selected_agent}: {agent_chat_response}")
# Automate Build Process
st.subheader("Automate Build Process")
if st.button("Automate"):
agent = AIAgent(selected_agent, "", []) # Load the agent without skills for now
summary, next_step = agent.autonomous_build(st.session_state.chat_history, st.session_state.workspace_projects)
st.write("Autonomous Build Summary:")
st.write(summary)
st.write("Next Step:")
st.write(next_step)