Spaces:
Sleeping
Sleeping
File size: 13,888 Bytes
a98a37e 4ebd6c7 1115ab9 1a022bd 1115ab9 1a022bd 36d7b59 1a022bd 2d8f9ba 0d9914e 1a022bd 2bb5759 0d9914e 1115ab9 1a022bd c6d665e cb052d2 1a022bd 307ce47 1a022bd 714ba23 1a022bd bbc516a 1a022bd 1115ab9 1a022bd 307ce47 0d9914e 307ce47 1a022bd 0d9914e 1a022bd 0d9914e 1a022bd 0d9914e 1a022bd 0d9914e 1a022bd 0d9914e 1a022bd 0d9914e cb052d2 0d9914e 1a022bd 0d9914e 1a022bd 0d9914e 1a022bd 0d9914e 1a022bd 0d9914e 1a022bd 0d9914e 307ce47 1a022bd 0d9914e 1a022bd 0d9914e 1a022bd 0d9914e 1a022bd 0d9914e 1a022bd 0d9914e 1a022bd 0d9914e 1a022bd 0d9914e 1a022bd 0d9914e 1a022bd 0d9914e 1a022bd 0d9914e 1a022bd 0d9914e 1a022bd 0d9914e e9b070c 307ce47 e9b070c 0d9914e e9b070c 0d9914e e9b070c 0d9914e 1a022bd 0d9914e 1a022bd 0d9914e e9b070c 0d9914e 3544360 0d9914e 535c246 0d9914e 64cff8e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 |
import os
import subprocess
import random
import time
from typing import Dict, List, Tuple
from datetime import datetime
import logging
import huggingface_hub as hfApi
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
from huggingface_hub import InferenceClient, cached_download, Repository
from IPython.display import display, HTML
import streamlit.components.v1 as components
import tempfile
import shutil
# --- Configuration ---
VERBOSE = True
MAX_HISTORY = 5
MAX_TOKENS = 2048
TEMPERATURE = 0.7
TOP_P = 0.8
REPETITION_PENALTY = 1.5
DEFAULT_PROJECT_PATH = "./my-hf-project" # Default project directory
# --- Logging Setup ---
logging.basicConfig(
filename="app.log",
level=logging.INFO,
format="%(asctime)s - %(levelname)s - %(message)s",
)
# --- Global Variables ---
current_model = None # Store the currently loaded model
repo = None # Store the Hugging Face Repository object
model_descriptions = {} # Store model descriptions
# --- Functions ---
def load_model(model_name: str):
"""Loads a language model and fetches its description."""
global current_model, model_descriptions
try:
tokenizer = AutoTokenizer.from_pretrained(model_name)
current_model = pipeline(
"text-generation",
model=model_name,
tokenizer=tokenizer,
model_kwargs={"load_in_8bit": True}
)
# Fetch and store the model description
api = HfApi()
model_info = api.model_info(model_name)
model_descriptions[model_name] = model_info.pipeline_tag
return f"Successfully loaded model: {model_name}"
except Exception as e:
return f"Error loading model: {str(e)}"
def model_selection():
st.title("Model Selection")
st.write("Select a model to use for code generation:")
models = ["distilbert", "t5", "codellama-7b", "geminai-1.5b"]
selected_model = st.selectbox("Select a model:", models)
if selected_model:
model = load_model(selected_model)
if model:
st.write(f"Model {selected_model} imported successfully!")
return model
else:
st.write(f"Error importing model {selected_model}.")
return None
def run_command(command: str, project_path: str = None) -> str:
"""Executes a shell command and returns the output."""
try:
if project_path:
process = subprocess.Popen(command, shell=True, cwd=project_path, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
else:
process = subprocess.Popen(command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
output, error = process.communicate()
if error:
return f"Error: {error.decode('utf-8')}"
return output.decode('utf-8')
except Exception as e:
return f"Error executing command: {str(e)}"
def create_project(project_name: str, project_path: str = DEFAULT_PROJECT_PATH) -> str:
"""Creates a new Hugging Face project."""
global repo
try:
if os.path.exists(project_path):
return f"Error: Directory '{project_path}' already exists!"
# Create the repository
repo = Repository(local_dir=project_path, clone_from=None)
repo.git_init()
# Add basic files (optional, can customize this)
with open(os.path.join(project_path, "README.md"), "w") as f:
f.write(f"# {project_name}\n\nA new Hugging Face project.")
# Stage all changes
repo.git_add(pattern="*")
repo.git_commit(commit_message="Initial commit")
return f"Hugging Face project '{project_name}' created successfully at '{project_path}'"
except Exception as e:
return f"Error creating Hugging Face project: {str(e)}"
def list_files(project_path: str = DEFAULT_PROJECT_PATH) -> str:
"""Lists files in the project directory."""
try:
files = os.listdir(project_path)
if not files:
return "Project directory is empty."
return "\n".join(files)
except Exception as e:
return f"Error listing project files: {str(e)}"
def read_file(filepath: str, project_path: str = DEFAULT_PROJECT_PATH) -> str:
"""Reads and returns the content of a file in the project."""
try:
full_path = os.path.join(project_path, filepath)
with open(full_path, "r") as f:
content = f.read()
return content
except Exception as e:
return f"Error reading file: {str(e)}"
def write_file(filepath: str, content: str, project_path: str = DEFAULT_PROJECT_PATH) -> str:
"""Writes content to a file in the project."""
try:
full_path = os.path.join(project_path, filepath)
with open(full_path, "w") as f:
f.write(content)
return f"Successfully wrote to '{full_path}'"
except Exception as e:
return f"Error writing to file: {str(e)}"
def preview(project_path: str = DEFAULT_PROJECT_PATH):
"""Provides a preview of the project, if applicable."""
# Assuming a simple HTML preview for now
try:
index_html_path = os.path.join(project_path, "index.html")
if os.path.exists(index_html_path):
with open(index_html_path, "r") as f:
html_content = f.read()
display(HTML(html_content))
return "Previewing 'index.html'"
else:
return "No 'index.html' found for preview."
except Exception as e:
return f"Error previewing project: {str(e)}"
def main():
with gr.Blocks() as demo:
gr.Markdown("## IDEvIII: Your Hugging Face No-Code App Builder")
# --- Model Selection ---
with gr.Tab("Model Selection"):
# --- Model Dropdown with Categories ---
model_categories = gr.Dropdown(
choices=["Text Generation", "Text Summarization", "Code Generation", "Translation", "Question Answering"],
label="Model Category",
value="Text Generation"
)
model_name = gr.Dropdown(
choices=[], # Initially empty, will be populated based on category
label="Hugging Face Model Name",
)
load_button = gr.Button("Load Model")
load_output = gr.Textbox(label="Output")
model_description = gr.Markdown(label="Model Description")
# --- Function to populate model names based on category ---
def update_model_dropdown(category):
models = []
api = HfApi()
for model in api.list_models():
if model.pipeline_tag == category:
models.append(model.modelId)
return gr.Dropdown.update(choices=models)
# --- Event handler for category dropdown ---
model_categories.change(
fn=update_model_dropdown,
inputs=model_categories,
outputs=model_name,
)
# --- Event handler to display model description ---
def display_model_description(model_name):
global model_descriptions
if model_name in model_descriptions:
return model_descriptions[model_name]
else:
return "Model description not available."
model_name.change(
fn=display_model_description,
inputs=model_name,
outputs=model_description,
)
# --- Event handler to load the selected model ---
def load_selected_model(model_name):
global current_model
load_output = load_model(model_name)
if current_model:
return f"Model '{model_name}' loaded successfully!"
else:
return f"Error loading model '{model_name}'"
load_button.click(load_selected_model, inputs=model_name, outputs=load_output)
# --- Chat Interface ---
with gr.Tab("Chat"):
chatbot = gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True)
message = gr.Textbox(label="Enter your message", placeholder="Ask me anything!")
purpose = gr.Textbox(label="Purpose", placeholder="What is the purpose of this interaction?")
agent_name = gr.Textbox(label="Agent Name", value="Generic Agent", interactive=True)
sys_prompt = gr.Textbox(label="System Prompt", max_lines=1, interactive=True)
temperature = gr.Slider(label="Temperature", value=TEMPERATURE, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more random results")
max_new_tokens = gr.Slider(label="Max new tokens", value=MAX_TOKENS, minimum=0, maximum=1048 * 10, step=64, interactive=True, info="The maximum number of new tokens")
top_p = gr.Slider(label="Top-p (nucleus sampling)", value=TOP_P, minimum=0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens")
repetition_penalty = gr.Slider(label="Repetition penalty", value=REPETITION_PENALTY, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Penalize repeated tokens")
submit_button = gr.Button(value="Send")
history = gr.State([])
def run_chat(purpose: str, message: str, agent_name: str, sys_prompt: str, temperature: float, max_new_tokens: int, top_p: float, repetition_penalty: float, history: List[Tuple[str, str]]) -> Tuple[List[Tuple[str, str]], List[Tuple[str, str]]]:
if not current_model:
return [(history, history), "Please load a model first."]
def generate_response(message, history, agent_name, sys_prompt, temperature, max_new_tokens, top_p, repetition_penalty):
if not current_model:
return "Please load a model first."
conversation = [{"role": "system", "content": sys_prompt}]
for message, response in history:
conversation.append({"role": "user", "content": message})
conversation.append({"role": "assistant", "content": response})
conversation.append({"role": "user", "content": message})
response = current_model.generate(
conversation,
max_new_tokens=max_new_tokens,
temperature=temperature,
top_p=top_p,
repetition_penalty=repetition_penalty
)
return response.text.strip()
response_text = generate_response(message, history, agent_name, sys_prompt, temperature, max_new_tokens, top_p, repetition_penalty)
history.append((message, response_text))
return history, history
submit_button.click(run_chat, inputs=[purpose, message, agent_name, sys_prompt, temperature, max_new_tokens, top_p, repetition_penalty, history], outputs=[chatbot, history])
# --- Project Management ---
with gr.Tab("Project Management"):
project_name_input = gr.Textbox(label="Project Name", placeholder="Enter project name")
create_project_button = gr.Button("Create Project")
project_output = gr.Textbox(label="Output")
def create_project_action(project_name):
return create_project(project_name)
create_project_button.click(create_project_action, inputs=project_name_input, outputs=project_output)
list_files_button = gr.Button("List Files")
list_files_output = gr.Textbox(label="Files")
def list_files_action():
return list_files()
list_files_button.click(list_files_action, outputs=list_files_output)
file_path_input = gr.Textbox(label="File Path", placeholder="Enter file path")
read_file_button = gr.Button("Read File")
read_file_output = gr.Textbox(label="File Content")
def read_file_action(file_path):
return read_file(file_path)
read_file_button.click(read_file_action, inputs=file_path_input, outputs=read_file_output)
write_file_button = gr.Button("Write File")
file_content_input = gr.Textbox(label="File Content", placeholder="Enter file content")
def write_file_action(file_path, file_content):
return write_file(file_path, file_content)
write_file_button.click(write_file_action, inputs=[file_path_input, file_content_input], outputs=project_output)
run_command_input = gr.Textbox(label="Command", placeholder="Enter command")
run_command_button = gr.Button("Run Command")
run_command_output = gr.Textbox(label="Command Output")
def run_command_action(command):
return run_command(command)
run_command_button.click(run_command_action, inputs=run_command_input, outputs=run_command_output)
preview_button = gr.Button("Preview Project")
preview_output = gr.Textbox(label="Preview URL")
def preview_action():
return preview()
preview_button.click(preview_action, outputs=preview_output)
# Custom server settings
server_name = "0.0.0.0" # Listen on all available network interfaces
server_port = 7860# Choose an available port
share_gradio_link = True # Share a public URL for the app
# Launch the interface
demo.launch(server_name=server_name, server_port=server_port, share=share_gradio_link)
if __name__ == "__main__":
main() |