import streamlit as st from streamlit_chat import message from transformers import AutoTokenizer, AutoModelForCausalLM # Initialize the model_name key in the st.session_state dictionary if 'model_name' not in st.session_state: st.session_state['model_name'] = "microsoft/DialoGPT-medium" # Define the tokenizer and model tokenizer = AutoTokenizer.from_pretrained(st.session_state['model_name']) model = AutoModelForCausalLM.from_pretrained(st.session_state['model_name']) if 'conversation' not in st.session_state: st.session_state['conversation'] = None if 'messages' not in st.session_state: st.session_state['messages'] = [] # Setting page title and header st.set_page_config(page_title="Chat GPT Clone", page_icon=":robot_face:") st.markdown("

💻 ChatterBot

", unsafe_allow_html=True) st.subheader("How Can I Help You Today? 🤖") st.sidebar.title("😎🗝️") st.session_state['model_name'] = st.sidebar.text_input("Hugging Face Model Name", value="microsoft/DialoGPT-medium") summarise_button = st.sidebar.button("Summarise the conversation", key="summarise") st.sidebar.image('./chatbot.jpg', width=300, use_column_width=True) if summarise_button: summarise_placeholder = st.sidebar.write("Nice chatting with you my friend ❤️:\n\n" + st.session_state['conversation']) def get_response(userInput): if st.session_state['conversation'] is None: st.session_state['conversation'] = "" input_ids = tokenizer.encode(userInput + tokenizer.eos_token, return_tensors="pt") outputs = model.generate(input_ids, max_length=1024) response = tokenizer.decode(outputs[0], skip_special_tokens=True) st.session_state['conversation'] += "\n" + response return response response_container = st.container() # Here we will have a container for user input text box container = st.container() with container: with st.form(key='my_form', clear_on_submit=True): user_input = st.text_area("Your question goes here:", key='input', height=100) submit_button = st.form_submit_button(label='Send') if submit_button: st.session_state['messages'].append(user_input) model_response = get_response(user_input) st.session_state['messages'].append(model_response) with response_container: for i in range(len(st.session_state['messages'])): if (i % 2) == 0: message(st.session_state['messages'][i], is_user=True, key=str(i) + '_user') else: message(st.session_state['messages'][i], key=str(i) + '_AI')