Spaces:
Runtime error
Runtime error
A B Vijay Kumar
commited on
Commit
·
cd152af
1
Parent(s):
6a22981
Update app.py
Browse files
app.py
CHANGED
@@ -1,35 +1,37 @@
|
|
1 |
import gradio as gr
|
2 |
-
#from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
-
from transformers import pipeline
|
4 |
-
|
5 |
model_name = "vijjuk/codegen-350M-mono-python-18k-alpaca"
|
6 |
-
|
|
|
|
|
7 |
|
8 |
|
9 |
|
10 |
|
11 |
|
|
|
|
|
|
|
|
|
12 |
#base_model = AutoModelForCausalLM.from_pretrained(model_name)
|
13 |
#tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
14 |
#tokenizer.pad_token = tokenizer.eos_token
|
15 |
#tokenizer.padding_side = "right"
|
16 |
|
17 |
-
def query(instruction, input):
|
18 |
-
prompt = f"""### Instruction:
|
19 |
-
Use the Task below and the Input given to write the Response, which is a programming code that can solve the Task.
|
20 |
-
|
21 |
-
{instruction}
|
22 |
-
### Input:
|
23 |
-
{input}
|
24 |
-
### Response:
|
25 |
-
"""
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
iface
|
35 |
-
iface.launch()
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
2 |
model_name = "vijjuk/codegen-350M-mono-python-18k-alpaca"
|
3 |
+
demo = gr.load(model_name, src="models")
|
4 |
+
|
5 |
+
demo.launch()
|
6 |
|
7 |
|
8 |
|
9 |
|
10 |
|
11 |
+
#import gradio as gr
|
12 |
+
#from transformers import AutoTokenizer, AutoModelForCausalLM
|
13 |
+
|
14 |
+
|
15 |
#base_model = AutoModelForCausalLM.from_pretrained(model_name)
|
16 |
#tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
17 |
#tokenizer.pad_token = tokenizer.eos_token
|
18 |
#tokenizer.padding_side = "right"
|
19 |
|
20 |
+
# def query(instruction, input):
|
21 |
+
# prompt = f"""### Instruction:
|
22 |
+
# Use the Task below and the Input given to write the Response, which is a programming code that can solve the Task.
|
23 |
+
# ### Task:
|
24 |
+
# {instruction}
|
25 |
+
# ### Input:
|
26 |
+
# {input}
|
27 |
+
# ### Response:
|
28 |
+
# """
|
29 |
+
# input_ids = tokenizer(prompt, return_tensors="pt", truncation=True)
|
30 |
+
# output_base = base_model.generate(input_ids=input_ids, max_new_tokens=500, do_sample=True, top_p=0.9,temperature=0.5)
|
31 |
+
# response = "{tokenizer.batch_decode(output_base.detach().cpu().numpy(), skip_special_tokens=True)[0][len(prompt):]}"
|
32 |
+
# return response
|
33 |
+
|
34 |
+
#inputs = ["text", "text"]
|
35 |
+
#outputs = "text"
|
36 |
+
#iface = gr.Interface(fn=query, inputs=inputs, outputs=outputs)
|
37 |
+
#iface.launch()
|
|