import streamlit as st from PIL import Image from transformers import pipeline import os # Check if Groq API key is set and load it if available GROQ_API_KEY = os.getenv("GROQ_API_KEY") if GROQ_API_KEY: from groq import Groq client = Groq(api_key=GROQ_API_KEY) # Use Groq API here if you want it for predictions or related tasks # Streamlit setup st.title("Pneumonia Chest X-ray Image Detection") # Upload image uploaded_image = st.file_uploader("Choose a chest X-ray image...", type=["jpg", "jpeg", "png"]) if uploaded_image is not None: # Display the image image = Image.open(uploaded_image) st.image(image, caption="Uploaded X-ray Image", use_column_width=True) # Load the Hugging Face model using the pipeline pipe = pipeline("image-classification", model="dima806/pneumonia_chest_xray_image_detection") # Run prediction with st.spinner("Classifying..."): prediction = pipe(image) # Display results st.write(f"Prediction: {prediction[0]['label']}") st.write(f"Confidence: {prediction[0]['score']:.4f}") else: st.warning("Please upload a chest X-ray image to begin detection.")