import os import streamlit as st from PIL import Image import torch from torchvision import transforms, models import numpy as np from groq import Groq # Set up environment variables os.environ["GROQ_API_KEY"] = "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" # Initialize Groq client client = Groq(api_key=os.environ.get("GROQ_API_KEY")) # Load Pretrained Models @st.cache_resource # Load Pretrained Model for Organ Recognition @st.cache_resource def load_organ_model(): model = models.resnet18(pretrained=True) # Load pretrained ResNet18 num_features = model.fc.in_features # Get the number of input features to the final layer model.fc = torch.nn.Linear(num_features, 4) # Modify the final layer for 4 classes model.eval() # Set the model to evaluation mode return model # Image Preprocessing def preprocess_image(image): transform = transforms.Compose([ transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) return transform(image).unsqueeze(0) # Groq API for AI Insights def get_ai_insights(text_prompt): try: response = client.chat.completions.create( messages=[{"role": "user", "content": text_prompt}], model="llama-3.3-70b-versatile" ) return response.choices[0].message.content except Exception as e: return f"Error: {e}" # Organ Recognition Prediction def predict_organ(image): with torch.no_grad(): input_tensor = preprocess_image(image) output = organ_model(input_tensor) # Check the output dimensions st.write(f"Model output shape: {output.shape}") # Ensure the output matches the number of classes classes = ["Lungs", "Heart", "Spine", "Other"] if output.size(1) != len(classes): raise ValueError( f"Model output size ({output.size(1)}) does not match the number of classes ({len(classes)})." ) # Get the prediction prediction_index = output.argmax().item() prediction = classes[prediction_index] return prediction # Predict Normal/Abnormal def predict_normal_abnormal(image): with torch.no_grad(): output = chexnet_model(preprocess_image(image)) classes = ["Normal", "Abnormal"] prediction = classes[output.argmax().item()] return prediction # Streamlit App st.title("Medical X-ray Analysis App") st.sidebar.title("Navigation") task = st.sidebar.radio("Select a task", ["Upload X-ray", "AI Insights"]) if task == "Upload X-ray": uploaded_file = st.file_uploader("Upload an X-ray image", type=["jpg", "png", "jpeg"]) if uploaded_file: image = Image.open(uploaded_file) st.image(image, caption="Uploaded X-ray", use_column_width=True) # Predict Organ st.subheader("Step 1: Identify the Organ") organ = predict_organ(image) st.write(f"Predicted Organ: **{organ}**") # Predict Normal/Abnormal st.subheader("Step 2: Analyze the X-ray") classification = predict_normal_abnormal(image) st.write(f"X-ray Status: **{classification}**") if classification == "Abnormal": st.subheader("Step 3: AI-Based Insights") ai_prompt = f"Explain why this X-ray of the {organ} is abnormal." insights = get_ai_insights(ai_prompt) st.write(insights) elif task == "AI Insights": st.subheader("Ask AI") user_input = st.text_area("Enter your query for AI insights") if user_input: response = get_ai_insights(user_input) st.write(response)