import os import streamlit as st import tensorflow as tf from tensorflow.keras.applications import ResNet50 from tensorflow.keras.applications.resnet50 import preprocess_input, decode_predictions from tensorflow.keras.models import Model from tensorflow.keras.layers import Dense, GlobalAveragePooling2D from tensorflow.keras.preprocessing.image import img_to_array, load_img import numpy as np import requests from PIL import Image # Set Groq API key in environment variable os.environ['GROQ_API_KEY'] = "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" GROQ_API_KEY = os.getenv('GROQ_API_KEY') # Load pre-trained ResNet50 for normal/abnormal classification base_model = ResNet50(weights='imagenet', include_top=False, input_shape=(224, 224, 3)) x = base_model.output x = GlobalAveragePooling2D()(x) x = Dense(1024, activation='relu')(x) predictions = Dense(1, activation='sigmoid')(x) classification_model = Model(inputs=base_model.input, outputs=predictions) # Load pre-trained ResNet50 for organ recognition organ_model = ResNet50(weights='imagenet') def classify_image(image_path): """Classify the image as normal or abnormal.""" image = load_img(image_path, target_size=(224, 224)) image_array = img_to_array(image) image_array = preprocess_input(image_array) image_array = np.expand_dims(image_array, axis=0) prediction = classification_model.predict(image_array) return 'Abnormal' if prediction[0][0] > 0.5 else 'Normal' def recognize_organ(image_path): """Recognize the organ in the image.""" image = load_img(image_path, target_size=(224, 224)) image_array = img_to_array(image) image_array = preprocess_input(image_array) image_array = np.expand_dims(image_array, axis=0) prediction = organ_model.predict(image_array) decoded = decode_predictions(prediction, top=3)[0] return decoded[0][1] # Top predicted class def get_ai_insights(organ): """Fetch AI-based insights about the organ using Groq API.""" url = "https://api.groq.com/v1/insights" headers = {"Authorization": f"Bearer {GROQ_API_KEY}", "Content-Type": "application/json"} data = {"query": f"Provide detailed insights about {organ} X-ray, its diseases, and treatments."} response = requests.post(url, headers=headers, json=data) if response.status_code == 200: return response.json().get("insights", "No insights available.") else: return "Failed to fetch insights. Please try again later." def main(): st.title("Medical Image Classification App") st.sidebar.title("Navigation") uploaded_file = st.file_uploader("Upload an X-ray or MRI image", type=["jpg", "jpeg", "png"]) if uploaded_file: image = Image.open(uploaded_file) st.image(image, caption="Uploaded Image", use_column_width=True) with open("temp_image.jpg", "wb") as f: f.write(uploaded_file.getbuffer()) st.write("### Classification Result") result = classify_image("temp_image.jpg") st.write(f"The X-ray is classified as: **{result}**") st.write("### Organ Recognition") organ = recognize_organ("temp_image.jpg") st.write(f"Recognized Organ: **{organ}**") st.write("### AI-Based Insights") insights = get_ai_insights(organ) st.write(insights) if __name__ == "__main__": main()