Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,111 +1,74 @@
|
|
1 |
import os
|
2 |
import streamlit as st
|
|
|
3 |
from PIL import Image
|
4 |
-
import torch
|
5 |
-
from torchvision import transforms, models
|
6 |
-
import numpy as np
|
7 |
-
from groq import Groq
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
# Initialize Groq client
|
13 |
-
client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
|
14 |
-
|
15 |
-
# Load Pretrained Models
|
16 |
-
@st.cache_resource
|
17 |
-
# Load Pretrained Model for Organ Recognition
|
18 |
-
@st.cache_resource
|
19 |
-
def load_organ_model():
|
20 |
-
model = models.resnet18(pretrained=True) # Load pretrained ResNet18
|
21 |
-
num_features = model.fc.in_features # Get the number of input features to the final layer
|
22 |
-
model.fc = torch.nn.Linear(num_features, 4) # Modify the final layer for 4 classes
|
23 |
-
model.eval() # Set the model to evaluation mode
|
24 |
-
return model
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
# Image Preprocessing
|
29 |
-
def preprocess_image(image):
|
30 |
-
transform = transforms.Compose([
|
31 |
-
transforms.Resize((224, 224)),
|
32 |
-
transforms.ToTensor(),
|
33 |
-
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
34 |
-
])
|
35 |
-
return transform(image).unsqueeze(0)
|
36 |
-
|
37 |
-
# Groq API for AI Insights
|
38 |
-
def get_ai_insights(text_prompt):
|
39 |
try:
|
40 |
-
|
41 |
-
messages=[{"role": "user", "content": text_prompt}],
|
42 |
-
model="llama-3.3-70b-versatile"
|
43 |
-
)
|
44 |
-
return response.choices[0].message.content
|
45 |
except Exception as e:
|
46 |
-
|
47 |
-
|
48 |
-
# Organ Recognition Prediction
|
49 |
-
def predict_organ(image):
|
50 |
-
with torch.no_grad():
|
51 |
-
input_tensor = preprocess_image(image)
|
52 |
-
output = organ_model(input_tensor)
|
53 |
-
|
54 |
-
# Check the output dimensions
|
55 |
-
st.write(f"Model output shape: {output.shape}")
|
56 |
-
|
57 |
-
# Ensure the output matches the number of classes
|
58 |
-
classes = ["Lungs", "Heart", "Spine", "Other"]
|
59 |
-
if output.size(1) != len(classes):
|
60 |
-
raise ValueError(
|
61 |
-
f"Model output size ({output.size(1)}) does not match the number of classes ({len(classes)})."
|
62 |
-
)
|
63 |
-
|
64 |
-
# Get the prediction
|
65 |
-
prediction_index = output.argmax().item()
|
66 |
-
prediction = classes[prediction_index]
|
67 |
-
return prediction
|
68 |
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
|
78 |
# Streamlit App
|
79 |
-
st.title("
|
80 |
-
st.
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
if
|
101 |
-
st.
|
102 |
-
|
103 |
-
|
104 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
response = get_ai_insights(user_input)
|
111 |
-
st.write(response)
|
|
|
1 |
import os
|
2 |
import streamlit as st
|
3 |
+
from transformers import pipeline, AutoImageProcessor, AutoModelForImageClassification
|
4 |
from PIL import Image
|
|
|
|
|
|
|
|
|
5 |
|
6 |
+
def load_pipeline():
|
7 |
+
"""Load the Hugging Face pipeline for image classification."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
try:
|
9 |
+
return pipeline("image-classification", model="dima806/pneumonia_chest_xray_image_detection")
|
|
|
|
|
|
|
|
|
10 |
except Exception as e:
|
11 |
+
st.error(f"Error loading pipeline: {e}")
|
12 |
+
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
+
def classify_image_with_pipeline(pipe, image):
|
15 |
+
"""Classify an image using the pipeline."""
|
16 |
+
try:
|
17 |
+
results = pipe(image)
|
18 |
+
return results
|
19 |
+
except Exception as e:
|
20 |
+
st.error(f"Error classifying image: {e}")
|
21 |
+
return None
|
22 |
|
23 |
# Streamlit App
|
24 |
+
st.title("Pneumonia Chest X-ray Image Detection")
|
25 |
+
st.markdown(
|
26 |
+
"""
|
27 |
+
This app detects signs of pneumonia in chest X-ray images using a pre-trained Hugging Face model.
|
28 |
+
"""
|
29 |
+
)
|
30 |
+
|
31 |
+
# File uploader
|
32 |
+
uploaded_file = st.file_uploader("Upload a chest X-ray image", type=["jpg", "jpeg", "png"])
|
33 |
+
|
34 |
+
if uploaded_file:
|
35 |
+
image = Image.open(uploaded_file)
|
36 |
+
st.image(image, caption="Uploaded Chest X-ray", use_column_width=True)
|
37 |
+
|
38 |
+
# Load the model pipeline
|
39 |
+
pipe = load_pipeline()
|
40 |
+
|
41 |
+
if pipe:
|
42 |
+
st.write("Classifying the image...")
|
43 |
+
results = classify_image_with_pipeline(pipe, image)
|
44 |
+
|
45 |
+
if results:
|
46 |
+
st.write("### Classification Results:")
|
47 |
+
for result in results:
|
48 |
+
st.write(f"**Label:** {result['label']} | **Score:** {result['score']:.4f}")
|
49 |
+
|
50 |
+
# Optional: Add Groq API integration if applicable
|
51 |
+
if os.getenv("GROQ_API_KEY"):
|
52 |
+
from groq import Groq
|
53 |
+
|
54 |
+
client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
|
55 |
+
|
56 |
+
st.sidebar.markdown("### Groq API Integration")
|
57 |
+
question = st.sidebar.text_input("Ask a question about pneumonia or X-ray diagnosis:")
|
58 |
+
|
59 |
+
if question:
|
60 |
+
try:
|
61 |
+
chat_completion = client.chat.completions.create(
|
62 |
+
messages=[
|
63 |
+
{
|
64 |
+
"role": "user",
|
65 |
+
"content": question,
|
66 |
+
}
|
67 |
+
],
|
68 |
+
model="llama-3.3-70b-versatile",
|
69 |
+
)
|
70 |
|
71 |
+
st.sidebar.write("**Groq API Response:**")
|
72 |
+
st.sidebar.write(chat_completion.choices[0].message.content)
|
73 |
+
except Exception as e:
|
74 |
+
st.sidebar.error(f"Error using Groq API: {e}")
|
|
|
|