abuzarAli commited on
Commit
73464a1
·
verified ·
1 Parent(s): 9cb87a8

Delete train_model.py

Browse files
Files changed (1) hide show
  1. train_model.py +0 -52
train_model.py DELETED
@@ -1,52 +0,0 @@
1
- import os
2
- import numpy as np
3
- from tensorflow.keras.models import Sequential
4
- from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense
5
- from tensorflow.keras.preprocessing.image import ImageDataGenerator
6
- from tensorflow.keras.optimizers import Adam
7
-
8
- # Set paths to the dataset (adjust paths based on your directory structure)
9
- train_dir = './data/train'
10
- validation_dir = './data/validation'
11
-
12
- # Define the CNN model
13
- def create_cnn_model(input_shape=(224, 224, 3)):
14
- model = Sequential()
15
- model.add(Conv2D(32, (3, 3), activation='relu', input_shape=input_shape))
16
- model.add(MaxPooling2D((2, 2)))
17
-
18
- model.add(Conv2D(64, (3, 3), activation='relu'))
19
- model.add(MaxPooling2D((2, 2)))
20
-
21
- model.add(Conv2D(128, (3, 3), activation='relu'))
22
- model.add(MaxPooling2D((2, 2)))
23
-
24
- model.add(Flatten())
25
- model.add(Dense(128, activation='relu'))
26
- model.add(Dense(1, activation='sigmoid')) # Binary classification (Normal vs Abnormal)
27
-
28
- model.compile(optimizer=Adam(), loss='binary_crossentropy', metrics=['accuracy'])
29
- return model
30
-
31
- # Create the CNN model
32
- model = create_cnn_model()
33
-
34
- # ImageDataGenerator for training and validation
35
- train_datagen = ImageDataGenerator(rescale=1./255, rotation_range=40, width_shift_range=0.2,
36
- height_shift_range=0.2, shear_range=0.2, zoom_range=0.2,
37
- horizontal_flip=True, fill_mode='nearest')
38
-
39
- validation_datagen = ImageDataGenerator(rescale=1./255)
40
-
41
- # Flow training and validation data from directories
42
- train_generator = train_datagen.flow_from_directory(train_dir, target_size=(224, 224),
43
- batch_size=32, class_mode='binary')
44
-
45
- validation_generator = validation_datagen.flow_from_directory(validation_dir, target_size=(224, 224),
46
- batch_size=32, class_mode='binary')
47
-
48
- # Train the model
49
- history = model.fit(train_generator, epochs=10, validation_data=validation_generator)
50
-
51
- # Save the trained model
52
- model.save('classification_model.h5')