Spaces:
Sleeping
Sleeping
import streamlit as st | |
from PIL import Image | |
from transformers import pipeline | |
import os | |
# Check if Groq API key is set and load it if available | |
GROQ_API_KEY = os.getenv("GROQ_API_KEY") | |
if GROQ_API_KEY: | |
from groq import Groq | |
client = Groq(api_key=GROQ_API_KEY) | |
# Use Groq API here if you want it for predictions or related tasks | |
# Streamlit setup | |
st.title("Pneumonia Chest X-ray Image Detection") | |
# Upload image | |
uploaded_image = st.file_uploader("Choose a chest X-ray image...", type=["jpg", "jpeg", "png"]) | |
if uploaded_image is not None: | |
# Display the image | |
image = Image.open(uploaded_image) | |
st.image(image, caption="Uploaded X-ray Image", use_column_width=True) | |
# Load the Hugging Face model using the pipeline | |
pipe = pipeline("image-classification", model="dima806/pneumonia_chest_xray_image_detection") | |
# Run prediction | |
with st.spinner("Classifying..."): | |
prediction = pipe(image) | |
# Display results | |
st.write(f"Prediction: {prediction[0]['label']}") | |
st.write(f"Confidence: {prediction[0]['score']:.4f}") | |
else: | |
st.warning("Please upload a chest X-ray image to begin detection.") | |