Spaces:
Sleeping
Sleeping
import os | |
import streamlit as st | |
from PIL import Image | |
import torch | |
from torchvision import transforms, models | |
# Set up environment variable for Groq API | |
os.environ["GROQ_API_KEY"] = "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" | |
# Load Pretrained Model for Organ Recognition | |
def load_organ_model(): | |
model = models.resnet18(pretrained=True) # ResNet18 pretrained model | |
model.fc = torch.nn.Linear(model.fc.in_features, 4) # Modify for 4 classes | |
model.eval() | |
return model | |
organ_model = load_organ_model() | |
# Image Preprocessing | |
def preprocess_image(image): | |
transform = transforms.Compose([ | |
transforms.Resize((224, 224)), | |
transforms.ToTensor(), | |
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) | |
]) | |
return transform(image).unsqueeze(0) | |
# Organ Recognition Prediction | |
def predict_organ(image): | |
with torch.no_grad(): | |
input_tensor = preprocess_image(image) | |
output = organ_model(input_tensor) | |
classes = ["Lungs", "Heart", "Spine", "Other"] # Example organ classes | |
prediction = classes[output.argmax().item()] | |
return prediction | |
# Streamlit App | |
st.title("X-ray Organ Recognition App") | |
st.sidebar.title("Navigation") | |
task = st.sidebar.radio("Select a task", ["Upload X-ray", "AI Insights"]) | |
if task == "Upload X-ray": | |
uploaded_file = st.file_uploader("Upload an X-ray image", type=["jpg", "png", "jpeg"]) | |
if uploaded_file: | |
image = Image.open(uploaded_file) | |
st.image(image, caption="Uploaded X-ray", use_column_width=True) | |
# Predict Organ | |
st.subheader("Step 1: Identify the Organ in the X-ray") | |
organ = predict_organ(image) | |
st.write(f"Predicted Organ: **{organ}**") | |
elif task == "AI Insights": | |
st.subheader("Ask AI") | |
user_input = st.text_area("Enter your query for AI insights") | |
if user_input: | |
st.write("AI insights will be generated here.") # Placeholder for AI logic | |