File size: 61,009 Bytes
3943768 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 |
import ast
import functools
import json
import os
import sys
import tempfile
import time
import typing
import uuid
import pytest
from tests.utils import wrap_test_forked
from src.prompter_utils import base64_encode_jinja_template, base64_decode_jinja_template
from src.vision.utils_vision import process_file_list
from src.utils import get_list_or_str, read_popen_pipes, get_token_count, reverse_ucurve_list, undo_reverse_ucurve_list, \
is_uuid4, has_starting_code_block, extract_code_block_content, looks_like_json, get_json, is_full_git_hash, \
deduplicate_names, handle_json, check_input_type, start_faulthandler, remove, get_gradio_depth, create_typed_dict, \
execute_cmd_stream
from src.enums import invalid_json_str, user_prompt_for_fake_system_prompt0
from src.prompter import apply_chat_template
import subprocess as sp
start_faulthandler()
@wrap_test_forked
def test_get_list_or_str():
assert get_list_or_str(['foo', 'bar']) == ['foo', 'bar']
assert get_list_or_str('foo') == 'foo'
assert get_list_or_str("['foo', 'bar']") == ['foo', 'bar']
@wrap_test_forked
def test_stream_popen1():
cmd_python = sys.executable
python_args = "-q -u"
python_code = "print('hi')"
cmd = f"{cmd_python} {python_args} -c \"{python_code}\""
with sp.Popen(cmd, stdout=sp.PIPE, stderr=sp.PIPE, text=True, shell=True) as p:
for out_line, err_line in read_popen_pipes(p):
print(out_line, end='')
print(err_line, end='')
p.poll()
@wrap_test_forked
def test_stream_popen2():
script = """for i in 0 1 2 3 4 5
do
echo "This messages goes to stdout $i"
sleep 1
echo This message goes to stderr >&2
sleep 1
done
"""
with open('pieces.sh', 'wt') as f:
f.write(script)
os.chmod('pieces.sh', 0o755)
with sp.Popen(["./pieces.sh"], stdout=sp.PIPE, stderr=sp.PIPE, text=True, shell=True) as p:
for out_line, err_line in read_popen_pipes(p):
print(out_line, end='')
print(err_line, end='')
p.poll()
@wrap_test_forked
def test_stream_python_execution(capsys):
script = """
import sys
import time
for i in range(3):
print(f"This message goes to stdout {i}")
time.sleep(0.1)
print(f"This message goes to stderr {i}", file=sys.stderr)
time.sleep(0.1)
"""
result = execute_cmd_stream(
script_content=script,
cwd=None,
env=None,
timeout=5,
capture_output=True,
text=True,
print_tags=True,
print_literal=False,
)
# Capture the printed output
captured = capsys.readouterr()
# Print the captured output for verification
print("Captured output:")
print(captured.out)
# Check return code
assert result.returncode == 0, f"Expected return code 0, but got {result.returncode}"
# Check stdout content
expected_stdout = "This message goes to stdout 0\nThis message goes to stdout 1\nThis message goes to stdout 2\n"
assert expected_stdout in result.stdout, f"Expected stdout to contain:\n{expected_stdout}\nBut got:\n{result.stdout}"
# Check stderr content
expected_stderr = "This message goes to stderr 0\nThis message goes to stderr 1\nThis message goes to stderr 2\n"
assert expected_stderr in result.stderr, f"Expected stderr to contain:\n{expected_stderr}\nBut got:\n{result.stderr}"
# Check if the output was streamed (should appear in captured output)
assert "STDOUT: This message goes to stdout 0" in captured.out, "Streaming output not detected in stdout"
assert "STDERR: This message goes to stderr 0" in captured.out, "Streaming output not detected in stderr"
print("All tests passed successfully!")
def test_stream_python_execution_empty_lines(capsys):
script = """
import sys
import time
print()
print("Hello")
print()
print("World", file=sys.stderr)
print()
"""
result = execute_cmd_stream(
script_content=script,
cwd=None,
env=None,
timeout=5,
capture_output=True,
text=True
)
captured = capsys.readouterr()
print("Captured output:")
print(captured.out)
# Check that we only see STDOUT and STDERR for non-empty lines
assert captured.out.count("STDOUT:") == 1, "Expected only one STDOUT line"
assert captured.out.count("STDERR:") == 1, "Expected only one STDERR line"
assert "STDOUT: Hello" in captured.out, "Expected 'Hello' in stdout"
assert "STDERR: World" in captured.out, "Expected 'World' in stderr"
print("All tests passed successfully!")
@wrap_test_forked
def test_memory_limit():
result = execute_cmd_stream(cmd=['python', './tests/memory_hog_script.py'], max_memory_usage=500_000_000)
assert result.returncode == -15
print(result.stdout, file=sys.stderr, flush=True)
print(result.stderr, file=sys.stderr, flush=True)
@pytest.mark.parametrize("text_context_list",
['text_context_list1', 'text_context_list2', 'text_context_list3', 'text_context_list4',
'text_context_list5', 'text_context_list6'])
@pytest.mark.parametrize("system_prompt", ['auto', ''])
@pytest.mark.parametrize("context", ['context1', 'context2'])
@pytest.mark.parametrize("iinput", ['iinput1', 'iinput2'])
@pytest.mark.parametrize("chat_conversation", ['chat_conversation1', 'chat_conversation2'])
@pytest.mark.parametrize("instruction", ['instruction1', 'instruction2'])
@wrap_test_forked
def test_limited_prompt(instruction, chat_conversation, iinput, context, system_prompt, text_context_list):
instruction1 = 'Who are you?'
instruction2 = ' '.join(['foo_%s ' % x for x in range(0, 500)])
instruction = instruction1 if instruction == 'instruction1' else instruction2
iinput1 = 'Extra instruction info'
iinput2 = ' '.join(['iinput_%s ' % x for x in range(0, 500)])
iinput = iinput1 if iinput == 'iinput1' else iinput2
context1 = 'context'
context2 = ' '.join(['context_%s ' % x for x in range(0, 500)])
context = context1 if context == 'context1' else context2
chat_conversation1 = []
chat_conversation2 = [['user_conv_%s ' % x, 'bot_conv_%s ' % x] for x in range(0, 500)]
chat_conversation = chat_conversation1 if chat_conversation == 'chat_conversation1' else chat_conversation2
text_context_list1 = []
text_context_list2 = ['doc_%s ' % x for x in range(0, 500)]
text_context_list3 = ['doc_%s ' % x for x in range(0, 10)]
text_context_list4 = ['documentmany_%s ' % x for x in range(0, 10000)]
import random, string
text_context_list5 = [
'documentlong_%s_%s' % (x, ''.join(random.choices(string.ascii_letters + string.digits, k=300))) for x in
range(0, 20)]
text_context_list6 = [
'documentlong_%s_%s' % (x, ''.join(random.choices(string.ascii_letters + string.digits, k=4000))) for x in
range(0, 1)]
if text_context_list == 'text_context_list1':
text_context_list = text_context_list1
elif text_context_list == 'text_context_list2':
text_context_list = text_context_list2
elif text_context_list == 'text_context_list3':
text_context_list = text_context_list3
elif text_context_list == 'text_context_list4':
text_context_list = text_context_list4
elif text_context_list == 'text_context_list5':
text_context_list = text_context_list5
elif text_context_list == 'text_context_list6':
text_context_list = text_context_list6
else:
raise ValueError("No such %s" % text_context_list)
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('h2oai/h2ogpt-4096-llama2-7b-chat')
prompt_type = 'llama2'
prompt_dict = None
debug = False
chat = True
stream_output = True
from src.prompter import Prompter
prompter = Prompter(prompt_type, prompt_dict, debug=debug,
stream_output=stream_output,
system_prompt=system_prompt,
tokenizer=tokenizer)
min_max_new_tokens = 512 # like in get_limited_prompt()
max_input_tokens = -1
max_new_tokens = 1024
model_max_length = 4096
from src.gen import get_limited_prompt
estimated_full_prompt, \
instruction, iinput, context, \
num_prompt_tokens, max_new_tokens, \
num_prompt_tokens0, num_prompt_tokens_actual, \
history_to_use_final, external_handle_chat_conversation, \
top_k_docs_trial, one_doc_size, truncation_generation, system_prompt, _, _ = \
get_limited_prompt(instruction, iinput, tokenizer,
prompter=prompter,
max_new_tokens=max_new_tokens,
context=context,
chat_conversation=chat_conversation,
text_context_list=text_context_list,
model_max_length=model_max_length,
min_max_new_tokens=min_max_new_tokens,
max_input_tokens=max_input_tokens,
verbose=True)
print('%s -> %s or %s: len(history_to_use_final): %s top_k_docs_trial=%s one_doc_size: %s' % (num_prompt_tokens0,
num_prompt_tokens,
num_prompt_tokens_actual,
len(history_to_use_final),
top_k_docs_trial,
one_doc_size),
flush=True, file=sys.stderr)
assert num_prompt_tokens <= model_max_length + min_max_new_tokens
# actual might be less due to token merging for characters across parts, but not more
assert num_prompt_tokens >= num_prompt_tokens_actual
assert num_prompt_tokens_actual <= model_max_length
if top_k_docs_trial > 0:
text_context_list = text_context_list[:top_k_docs_trial]
elif one_doc_size is not None:
text_context_list = [text_context_list[0][:one_doc_size]]
else:
text_context_list = []
assert sum([get_token_count(x, tokenizer) for x in text_context_list]) <= model_max_length
@wrap_test_forked
def test_reverse_ucurve():
ab = []
a = [1, 2, 3, 4, 5, 6, 7, 8]
b = [2, 4, 6, 8, 7, 5, 3, 1]
ab.append([a, b])
a = [1]
b = [1]
ab.append([a, b])
a = [1, 2]
b = [2, 1]
ab.append([a, b])
a = [1, 2, 3]
b = [2, 3, 1]
ab.append([a, b])
a = [1, 2, 3, 4]
b = [2, 4, 3, 1]
ab.append([a, b])
for a, b in ab:
assert reverse_ucurve_list(a) == b
assert undo_reverse_ucurve_list(b) == a
@wrap_test_forked
def check_gradio():
import gradio as gr
assert gr.__h2oai__
@wrap_test_forked
def test_is_uuid4():
# Example usage:
test_strings = [
"f47ac10b-58cc-4372-a567-0e02b2c3d479", # Valid UUID v4
"not-a-uuid", # Invalid
"12345678-1234-1234-1234-123456789abc", # Valid UUID v4
"xyz" # Invalid
]
# "f47ac10b-58cc-4372-a567-0e02b2c3d479": True (Valid UUID v4)
# "not-a-uuid": False (Invalid)
# "12345678-1234-1234-1234-123456789abc": False (Invalid, even though it resembles a UUID, it doesn't follow the version 4 UUID pattern)
# "xyz": False (Invalid)
# Check each string and print whether it's a valid UUID v4
assert [is_uuid4(s) for s in test_strings] == [True, False, False, False]
@wrap_test_forked
def test_is_git_hash():
# Example usage:
hashes = ["1a3b5c7d9e1a3b5c7d9e1a3b5c7d9e1a3b5c7d9e", "1G3b5c7d9e1a3b5c7d9e1a3b5c7d9e1a3b5c7d9e", "1a3b5c7d"]
assert [is_full_git_hash(h) for h in hashes] == [True, False, False]
@wrap_test_forked
def test_chat_template():
instruction = "Who are you?"
system_prompt = "Be kind"
history_to_use = [('Are you awesome?', "Yes I'm awesome.")]
image_file = []
other_base_models = ['h2oai/mixtral-gm-rag-experimental-v2']
supports_system_prompt = ['meta-llama/Llama-2-7b-chat-hf', 'openchat/openchat-3.5-1210', 'SeaLLMs/SeaLLM-7B-v2',
'h2oai/h2ogpt-gm-experimental']
base_models = supports_system_prompt + other_base_models
for base_model in base_models:
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(base_model)
prompt = apply_chat_template(instruction, system_prompt, history_to_use, image_file,
tokenizer,
user_prompt_for_fake_system_prompt=user_prompt_for_fake_system_prompt0,
verbose=True)
assert 'Be kind' in prompt # put into pre-conversation if no actual system prompt
assert instruction in prompt
assert history_to_use[0][0] in prompt
assert history_to_use[0][1] in prompt
@wrap_test_forked
def test_chat_template_images():
history_to_use = [('Are you awesome?', "Yes I'm awesome.")]
base_model = 'OpenGVLab/InternVL-Chat-V1-5'
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(base_model, trust_remote_code=True)
messages = [{'role': 'system',
'content': 'You are h2oGPTe, an expert question-answering AI system created by H2O.ai that performs like GPT-4 by OpenAI.'},
{'role': 'user',
'content': 'What is the name of the tower in one of the images?'}]
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
assert prompt is not None
(instruction, system_prompt, chat_conversation, image_file,
user_prompt_for_fake_system_prompt,
test_only, verbose) = ('What is the name of the tower in one of the images?',
'You are h2oGPTe, an expert question-answering AI system created by H2O.ai that performs like GPT-4 by OpenAI.',
[], ['/tmp/image_file_0f5f011d-c907-4836-9f38-0ba579b45ffc.jpeg',
'/tmp/image_file_60dce245-af39-4f8c-9651-df9ae0bd0afa.jpeg',
'/tmp/image_file_e0b32625-9de3-40d7-98fb-c2e6368d6d73.jpeg'], None, False, False)
prompt = apply_chat_template(instruction, system_prompt, history_to_use, image_file,
tokenizer,
user_prompt_for_fake_system_prompt=user_prompt_for_fake_system_prompt0,
test_only=test_only,
verbose=verbose)
assert 'h2oGPTe' in prompt # put into pre-conversation if no actual system prompt
assert instruction in prompt
assert history_to_use[0][0] in prompt
assert history_to_use[0][1] in prompt
@wrap_test_forked
def test_partial_codeblock():
json.dumps(invalid_json_str)
# Example usages:
example_1 = "```code block starts immediately"
example_2 = "\n ```code block after newline and spaces"
example_3 = "<br>```code block after HTML line break"
example_4 = "This is a regular text without a code block."
assert has_starting_code_block(example_1)
assert has_starting_code_block(example_2)
assert has_starting_code_block(example_3)
assert not has_starting_code_block(example_4)
# Example usages:
example_stream_1 = "```code block content here```more text"
example_stream_2 = "```code block content with no end yet..."
example_stream_3 = "```\ncode block content here\n```\nmore text"
example_stream_4 = "```\ncode block content \nwith no end yet..."
example_stream_5 = "\n ```\ncode block content here\n```\nmore text"
example_stream_6 = "\n ```\ncode block content \nwith no end yet..."
example_stream_7 = "more text"
assert extract_code_block_content(example_stream_1) == "block content here"
assert extract_code_block_content(example_stream_2) == "block content with no end yet..."
assert extract_code_block_content(example_stream_3) == "code block content here"
assert extract_code_block_content(example_stream_4) == "code block content \nwith no end yet..."
assert extract_code_block_content(example_stream_5) == "code block content here"
assert extract_code_block_content(example_stream_6) == "code block content \nwith no end yet..."
assert extract_code_block_content(example_stream_7) == ""
# Assuming the function extract_code_block_content is defined as previously described.
# Test case 1: Empty string
assert extract_code_block_content("") is '', "Test 1 Failed: Should return None for empty string"
# Test case 2: No starting code block
assert extract_code_block_content(
"No code block here") is '', "Test 2 Failed: Should return None if there's no starting code block"
# Test case 3: Code block at the start without ending
assert extract_code_block_content(
"```text\nStarting without end") == "Starting without end", "Test 3 Failed: Should return the content of code block starting at the beginning"
# Test case 4: Code block at the end without starting
assert extract_code_block_content(
"Text before code block```text\nEnding without start") == "Ending without start", "Test 4 Failed: Should extract text following starting delimiter regardless of position"
# Test case 5: Code block in the middle with proper closing
assert extract_code_block_content(
"Text before ```text\ncode block``` text after") == "code block", "Test 5 Failed: Should extract the code block in the middle"
# Test case 6: Multiple code blocks, only extracts the first one
assert extract_code_block_content(
"```text\nFirst code block``` Text in between ```Second code block```") == "First code block", "Test 6 Failed: Should only extract the first code block"
# Test case 7: Code block with only whitespace inside
assert extract_code_block_content(
"``` ```") == "", "Test 7 Failed: Should return an empty string for a code block with only whitespace"
# Test case 8: Newline characters inside code block
assert extract_code_block_content(
"```\nLine 1\nLine 2\n```") == "Line 1\nLine 2", "Test 8 Failed: Should preserve newline characters within code block but not leading/trailing newlines due to .strip()"
# Test case 9: Code block with special characters
special_characters = "```text\nSpecial characters !@#$%^&*()```"
assert extract_code_block_content(
special_characters) == "Special characters !@#$%^&*()", "Test 9 Failed: Should correctly handle special characters"
# Test case 10: No starting code block but with ending delimiter
assert extract_code_block_content(
"Text with ending code block delimiter```") is '', "Test 10 Failed: Should return None if there's no starting code block but with an ending delimiter"
# Test cases
assert looks_like_json('{ "key": "value" }'), "Failed: JSON object"
assert looks_like_json('[1, 2, 3]'), "Failed: JSON array"
assert looks_like_json(' "string" '), "Failed: JSON string"
assert looks_like_json('null'), "Failed: JSON null"
assert looks_like_json(' true '), "Failed: JSON true"
assert looks_like_json('123'), "Failed: JSON number"
assert not looks_like_json('Just a plain text'), "Failed: Not JSON"
assert not looks_like_json('```code block```'), "Failed: Code block"
# Test cases
get_json_nofixup = functools.partial(get_json, fixup=False)
assert get_json_nofixup(
'{"key": "value"}') == '{"key": "value"}', "Failed: Valid JSON object should be returned as is."
assert get_json_nofixup('[1, 2, 3]') == '[1, 2, 3]', "Failed: Valid JSON array should be returned as is."
assert get_json_nofixup('```text\nSome code```') == 'Some code', "Failed: Code block content should be returned."
assert get_json_nofixup(
'Some random text') == invalid_json_str, "Failed: Random text should lead to 'invalid json' return."
assert get_json_nofixup(
'```{"key": "value in code block"}```') == '{"key": "value in code block"}', "Failed: JSON in code block should be correctly extracted and returned."
assert get_json_nofixup(
'```code\nmore code```') == 'more code', "Failed: Multi-line code block content should be returned."
assert get_json_nofixup(
'```\n{"key": "value"}\n```') == '{"key": "value"}', "Failed: JSON object in code block with new lines should be correctly extracted and returned."
assert get_json_nofixup('') == invalid_json_str, "Failed: Empty string should lead to 'invalid json' return."
assert get_json_nofixup(
'True') == invalid_json_str, "Failed: Non-JSON 'True' value should lead to 'invalid json' return."
assert get_json_nofixup(
'{"incomplete": true,') == '{"incomplete": true,', "Failed: Incomplete JSON should still be considered as JSON and returned as is."
answer = """Here is an example JSON that fits the provided schema:
```json
{
"name": "John Doe",
"age": 30,
"skills": ["Java", "Python", "JavaScript"],
"work history": [
{
"company": "ABC Corp",
"duration": "2018-2020",
"position": "Software Engineer"
},
{
"company": "XYZ Inc",
"position": "Senior Software Engineer",
"duration": "2020-Present"
}
]
}
```
Note that the `work history` array contains two objects, each with a `company`, `duration`, and `position` property. The `skills` array contains three string elements, each with a maximum length of 10 characters. The `name` and `age` properties are also present and are of the correct data types."""
assert get_json_nofixup(answer) == """{
"name": "John Doe",
"age": 30,
"skills": ["Java", "Python", "JavaScript"],
"work history": [
{
"company": "ABC Corp",
"duration": "2018-2020",
"position": "Software Engineer"
},
{
"company": "XYZ Inc",
"position": "Senior Software Engineer",
"duration": "2020-Present"
}
]
}"""
# JSON within a code block
json_in_code_block = """
Here is an example JSON:
```json
{"key": "value"}
```
"""
# Plain JSON response
plain_json_response = '{"key": "value"}'
# Invalid JSON or non-JSON response
non_json_response = "This is just some text."
# Tests
assert get_json_nofixup(
json_in_code_block).strip() == '{"key": "value"}', "Should extract and return JSON from a code block."
assert get_json_nofixup(plain_json_response) == '{"key": "value"}', "Should return plain JSON as is."
assert get_json_nofixup(
non_json_response) == invalid_json_str, "Should return 'invalid json' for non-JSON response."
# Test with the provided example
stream_content = """ {\n \"name\": \"John Doe\",\n \"email\": \"[email protected]\",\n \"jobTitle\": \"Software Developer\",\n \"department\": \"Technology\",\n \"hireDate\": \"2020-01-01\",\n \"employeeId\": 123456,\n \"manager\": {\n \"name\": \"Jane Smith\",\n \"email\": \"[email protected]\",\n \"jobTitle\": \"Senior Software Developer\"\n },\n \"skills\": [\n \"Java\",\n \"Python\",\n \"JavaScript\",\n \"React\",\n \"Spring\"\n ],\n \"education\": {\n \"degree\": \"Bachelor's Degree\",\n \"field\": \"Computer Science\",\n \"institution\": \"Example University\",\n \"graduationYear\": 2018\n },\n \"awards\": [\n {\n \"awardName\": \"Best Developer of the Year\",\n \"year\": 2021\n },\n {\n \"awardName\": \"Most Valuable Team Player\",\n \"year\": 2020\n }\n ],\n \"performanceRatings\": {\n \"communication\": 4.5,\n \"teamwork\": 4.8,\n \"creativity\": 4.2,\n \"problem-solving\": 4.6,\n \"technical skills\": 4.7\n }\n}\n```"""
extracted_content = get_json_nofixup(stream_content)
assert extracted_content == """{\n \"name\": \"John Doe\",\n \"email\": \"[email protected]\",\n \"jobTitle\": \"Software Developer\",\n \"department\": \"Technology\",\n \"hireDate\": \"2020-01-01\",\n \"employeeId\": 123456,\n \"manager\": {\n \"name\": \"Jane Smith\",\n \"email\": \"[email protected]\",\n \"jobTitle\": \"Senior Software Developer\"\n },\n \"skills\": [\n \"Java\",\n \"Python\",\n \"JavaScript\",\n \"React\",\n \"Spring\"\n ],\n \"education\": {\n \"degree\": \"Bachelor's Degree\",\n \"field\": \"Computer Science\",\n \"institution\": \"Example University\",\n \"graduationYear\": 2018\n },\n \"awards\": [\n {\n \"awardName\": \"Best Developer of the Year\",\n \"year\": 2021\n },\n {\n \"awardName\": \"Most Valuable Team Player\",\n \"year\": 2020\n }\n ],\n \"performanceRatings\": {\n \"communication\": 4.5,\n \"teamwork\": 4.8,\n \"creativity\": 4.2,\n \"problem-solving\": 4.6,\n \"technical skills\": 4.7\n }\n}"""
def test_partial_codeblock2():
example_1 = "```code block starts immediately"
example_2 = "\n ```code block after newline and spaces"
example_3 = "<br>```code block after HTML line break"
example_4 = "This is a regular text without a code block."
assert has_starting_code_block(example_1)
assert has_starting_code_block(example_2)
assert has_starting_code_block(example_3)
assert not has_starting_code_block(example_4)
def test_extract_code_block_content():
example_stream_1 = "```code block content here```more text"
example_stream_2 = "```code block content with no end yet..."
example_stream_3 = "```\ncode block content here\n```\nmore text"
example_stream_4 = "```\ncode block content \nwith no end yet..."
example_stream_5 = "\n ```\ncode block content here\n```\nmore text"
example_stream_6 = "\n ```\ncode block content \nwith no end yet..."
example_stream_7 = "more text"
example_stream_8 = """```markdown
```json
{
"Employee": {
"Name": "Henry",
"Title": "AI Scientist",
"Department": "AI",
"Location": "San Francisco",
"Contact": {
"Email": "[email protected]",
"Phone": "+1-234-567-8901"
},
"Profile": {
"Education": [
{
"Institution": "Stanford University",
"Degree": "Ph.D.",
"Field": "Computer Science"
},
{
"Institution": "University of California, Berkeley",
"Degree": "M.S.",
"Field": "Artificial Intelligence"
}
],
"Experience": [
{
"Company": "Google",
"Role": "Senior AI Engineer",
"Duration": "5 years"
},
{
"Company": "Facebook",
"Role": "Principal AI Engineer",
"Duration": "3 years"
}
],
"Skills": [
"Python",
"TensorFlow",
"PyTorch",
"Natural Language Processing",
"Machine Learning"
],
"Languages": [
"English",
"French",
"Spanish"
],
"Certifications": [
{
"Name": "Certified AI Professional",
"Issuing Body": "AI Professional Association"
},
{
"Name": "Advanced AI Course Certificate",
"Issuing Body": "AI Institute"
}
]
}
}
}
```
"""
assert extract_code_block_content(example_stream_1) == "block content here"
assert extract_code_block_content(example_stream_2) == "block content with no end yet..."
assert extract_code_block_content(example_stream_3) == "code block content here"
assert extract_code_block_content(example_stream_4) == "code block content \nwith no end yet..."
assert extract_code_block_content(example_stream_5) == "code block content here"
assert extract_code_block_content(example_stream_6) == "code block content \nwith no end yet..."
assert extract_code_block_content(example_stream_7) == ""
expected8 = """{
"Employee": {
"Name": "Henry",
"Title": "AI Scientist",
"Department": "AI",
"Location": "San Francisco",
"Contact": {
"Email": "[email protected]",
"Phone": "+1-234-567-8901"
},
"Profile": {
"Education": [
{
"Institution": "Stanford University",
"Degree": "Ph.D.",
"Field": "Computer Science"
},
{
"Institution": "University of California, Berkeley",
"Degree": "M.S.",
"Field": "Artificial Intelligence"
}
],
"Experience": [
{
"Company": "Google",
"Role": "Senior AI Engineer",
"Duration": "5 years"
},
{
"Company": "Facebook",
"Role": "Principal AI Engineer",
"Duration": "3 years"
}
],
"Skills": [
"Python",
"TensorFlow",
"PyTorch",
"Natural Language Processing",
"Machine Learning"
],
"Languages": [
"English",
"French",
"Spanish"
],
"Certifications": [
{
"Name": "Certified AI Professional",
"Issuing Body": "AI Professional Association"
},
{
"Name": "Advanced AI Course Certificate",
"Issuing Body": "AI Institute"
}
]
}
}
}"""
assert extract_code_block_content(example_stream_8) == expected8
@pytest.mark.parametrize("method", ['repair_json', 'get_json'])
@wrap_test_forked
def test_repair_json(method):
a = """{
"Supplementary Leverage Ratio": [7.0, 5.8, 5.7],
"Liquidity Metrics": {
"End of Period Liabilities and Equity": [2260, 2362, 2291],
"Liquidity Coverage Ratio": [118, 115, 115],
"Trading-Related Liabilities(7)": [84, 72, 72],
"Total Available Liquidty Resources": [972, 994, 961],
"Deposits Balance Sheet": [140, 166, 164],
"Other Liabilities(7)": {},
"LTD": {},
"Equity": {
"Book Value per share": [86.43, 92.16, 92.21],
"Tangible Book Value per share": [73.67, 79.07, 79.16]
}
},
"Capital and Balance Sheet ($ in B)": {
"Risk-based Capital Metrics(1)": {
"End of Period Assets": [2260, 2362, 2291],
"CET1 Capital": [147, 150, 150],
"Standardized RWAs": [1222, 1284, 1224],
"Investments, net": {},
"CET1 Capital Ratio - Standardized": [12.1, 11.7, 12.2],
"Advanced RWAs": [1255, 1265, 1212],
"Trading-Related Assets(5)": [670, 681, 659],
"CET1 Capital Ratio - Advanced": [11.7, 11.8, 12.4],
"Loans, net(6)": {},
"Other(5)": [182, 210, 206]
}
}
}
Note: Totals may not sum due to rounding. LTD: Long-term debt. All information for 4Q21 is preliminary. All footnotes are presented on Slide 26."""
from json_repair import repair_json
for i in range(len(a)):
text = a[:i]
t0 = time.time()
if method == 'repair_json':
good_json_string = repair_json(text)
else:
good_json_string = get_json(text)
if i > 50:
assert len(good_json_string) > 5
tdelta = time.time() - t0
assert tdelta < 0.005, "Too slow: %s" % tdelta
print("%s : %s : %s" % (i, tdelta, good_json_string))
json.loads(good_json_string)
def test_json_repair_more():
response0 = """```markdown
```json
{
"Employee": {
"Name": "Henry",
"Title": "AI Scientist",
"Department": "AI",
"Location": "San Francisco",
"Contact": {
"Email": "[email protected]",
"Phone": "+1-234-567-8901"
},
"Profile": {
"Education": [
{
"Institution": "Stanford University",
"Degree": "Ph.D.",
"Field": "Computer Science"
},
{
"Institution": "University of California, Berkeley",
"Degree": "M.S.",
"Field": "Artificial Intelligence"
}
],
"Experience": [
{
"Company": "Google",
"Role": "Senior AI Engineer",
"Duration": "5 years"
},
{
"Company": "Facebook",
"Role": "Principal AI Engineer",
"Duration": "3 years"
}
],
"Skills": [
"Python",
"TensorFlow",
"PyTorch",
"Natural Language Processing",
"Machine Learning"
],
"Languages": [
"English",
"French",
"Spanish"
],
"Certifications": [
{
"Name": "Certified AI Professional",
"Issuing Body": "AI Professional Association"
},
{
"Name": "Advanced AI Course Certificate",
"Issuing Body": "AI Institute"
}
]
}
}
}
```
"""
from json_repair import repair_json
response = repair_json(response0)
assert response.startswith('{')
response0 = """ Here is an example employee profile in JSON format, with keys that are less than 64 characters and made of only alphanumerics, underscores, or hyphens:
```json
{
"employee_id": 1234,
"name": "John Doe",
"email": "[email protected]",
"job_title": "Software Engineer",
"department": "Engineering",
"hire_date": "2020-01-01",
"salary": 100000,
"manager_id": 5678
}
```
In Markdown, you can display this JSON code block like this:
```json
```
{
"employee_id": 1234,
"name": "John Doe",
"email": "[email protected]",
"job_title": "Software Engineer",
"department": "Engineering",
"hire_date": "2020-01-01",
"salary": 100000,
"manager_id": 5678
}
```
This will display the JSON code block with proper formatting and highlighting.
"""
# from json_repair import repair_json
from src.utils import get_json, repair_json_by_type
import json
response = repair_json_by_type(response0)
assert json.loads(response)['employee_id'] == 1234
print(response)
response = get_json(response0, json_schema_type='object')
assert json.loads(response)['employee_id'] == 1234
print(response)
@wrap_test_forked
def test_dedup():
# Example usage:
names_list = ['Alice', 'Bob', 'Alice', 'Charlie', 'Bob', 'Alice']
assert deduplicate_names(names_list) == ['Alice', 'Bob', 'Alice_1', 'Charlie', 'Bob_1', 'Alice_2']
# Test cases
def test_handle_json_normal():
normal_json = {
"name": "Henry",
"age": 35,
"skills": ["AI", "Machine Learning", "Data Science"],
"workhistory": [
{"company": "TechCorp", "duration": "2015-2020", "position": "Senior AI Scientist"},
{"company": "AI Solutions", "duration": "2010-2015", "position": "AI Scientist"}
]
}
assert handle_json(normal_json) == normal_json
def test_handle_json_schema():
schema_json = {
"name": {"type": "string", "value": "Henry"},
"age": {"type": "integer", "value": 35},
"skills": {"type": "array", "items": [
{"type": "string", "value": "AI", "maxLength": 10},
{"type": "string", "value": "Machine Learning", "maxLength": 10},
{"type": "string", "value": "Data Science", "maxLength": 10}
], "minItems": 3},
"workhistory": {"type": "array", "items": [
{"type": "object", "properties": {
"company": {"type": "string", "value": "TechCorp"},
"duration": {"type": "string", "value": "2015-2020"},
"position": {"type": "string", "value": "Senior AI Scientist"}
}, "required": ["company", "position"]},
{"type": "object", "properties": {
"company": {"type": "string", "value": "AI Solutions"},
"duration": {"type": "string", "value": "2010-2015"},
"position": {"type": "string", "value": "AI Scientist"}
}, "required": ["company", "position"]}
]}
}
expected_result = {
"name": "Henry",
"age": 35,
"skills": ["AI", "Machine Learning", "Data Science"],
"workhistory": [
{"company": "TechCorp", "duration": "2015-2020", "position": "Senior AI Scientist"},
{"company": "AI Solutions", "duration": "2010-2015", "position": "AI Scientist"}
]
}
assert handle_json(schema_json) == expected_result
def test_handle_json_mixed():
mixed_json = {
"name": "Henry",
"age": {"type": "integer", "value": 35},
"skills": ["AI", {"type": "string", "value": "Machine Learning"}, "Data Science"],
"workhistory": {"type": "array", "items": [
{"type": "object", "properties": {
"company": {"type": "string", "value": "TechCorp"},
"duration": {"type": "string", "value": "2015-2020"},
"position": {"type": "string", "value": "Senior AI Scientist"}
}, "required": ["company", "position"]},
{"company": "AI Solutions", "duration": "2010-2015", "position": "AI Scientist"}
]}
}
expected_result = {
"name": "Henry",
"age": 35,
"skills": ["AI", "Machine Learning", "Data Science"],
"workhistory": [
{"company": "TechCorp", "duration": "2015-2020", "position": "Senior AI Scientist"},
{"company": "AI Solutions", "duration": "2010-2015", "position": "AI Scientist"}
]
}
assert handle_json(mixed_json) == expected_result
def test_handle_json_empty():
empty_json = {}
assert handle_json(empty_json) == empty_json
def test_handle_json_no_schema():
no_schema_json = {
"name": {"first": "Henry", "last": "Smith"},
"age": 35,
"skills": ["AI", "Machine Learning", "Data Science"]
}
assert handle_json(no_schema_json) == no_schema_json
def test_json_repair_on_string():
from json_repair import repair_json
response0 = 'According to the information provided, the best safety assessment enum label is "Safe".'
json_schema_type = 'object'
response = get_json(response0, json_schema_type=json_schema_type)
response = json.loads(response)
assert isinstance(response, dict) and not response
response = repair_json(response0)
assert isinstance(response, str) and response in ['""', """''""", '', None]
# Example usage converted to pytest test cases
def test_check_input_type():
# Valid URL
assert check_input_type("https://example.com") == 'url'
# Valid file path (Note: Adjust the path to match an actual file on your system for the test to pass)
assert check_input_type("tests/receipt.jpg") == 'file'
# Valid base64 encoded image
assert check_input_type("b'...") == 'base64'
# Non-string inputs
assert check_input_type(b"bytes data") == 'unknown'
assert check_input_type(12345) == 'unknown'
assert check_input_type(["list", "of", "strings"]) == 'unknown'
# Invalid URL
assert check_input_type("invalid://example.com") == 'unknown'
# Invalid file path
assert check_input_type("/path/to/invalid/file.txt") == 'unknown'
# Plain string
assert check_input_type("just a string") == 'unknown'
def test_process_file_list():
# Create a list of test files
test_files = [
"tests/videotest.mp4",
"tests/dental.png",
"tests/fastfood.jpg",
"tests/ocr2.png",
"tests/receipt.jpg",
"tests/revenue.png",
"tests/jon.png",
"tests/ocr1.png",
"tests/ocr3.png",
"tests/screenshot.png",
]
output_dir = os.path.join(tempfile.gettempdir(), 'image_path_%s' % str(uuid.uuid4()))
print(output_dir, file=sys.stderr)
# Process the files
processed_files = process_file_list(test_files, output_dir, resolution=(640, 480), image_format="jpg", verbose=True)
# Print the resulting list of image files
print("Processed files:")
for file in processed_files:
print(file, file=sys.stderr)
assert os.path.isfile(file)
assert len(processed_files) == len(
test_files) - 1 + 17 + 4 # 17 is the number of images generated from the video file
def test_process_file_list_extract_frames():
# Create a list of test files
test_files = [
"tests/videotest.mp4",
"tests/dental.png",
"tests/fastfood.jpg",
"tests/ocr2.png",
"tests/receipt.jpg",
"tests/revenue.png",
"tests/jon.png",
"tests/ocr1.png",
"tests/ocr3.png",
"tests/screenshot.png",
]
output_dir = os.path.join(tempfile.gettempdir(), 'image_path_%s' % str(uuid.uuid4()))
print(output_dir, file=sys.stderr)
# Process the files
processed_files = process_file_list(test_files, output_dir, resolution=(640, 480), image_format="jpg",
video_frame_period=0, extract_frames=10, verbose=True)
# Print the resulting list of image files
print("Processed files:")
for file in processed_files:
print(file, file=sys.stderr)
assert os.path.isfile(file)
assert len(processed_files) == len(test_files) - 1 + 10 # 10 is the number of images generated from the video file
def test_process_youtube():
# Create a list of test files
test_files = [
"https://www.youtube.com/shorts/fRkZCriQQNU",
"tests/screenshot.png"
]
output_dir = os.path.join(tempfile.gettempdir(), 'image_path_%s' % str(uuid.uuid4()))
print(output_dir, file=sys.stderr)
# Process the files
processed_files = process_file_list(test_files, output_dir, resolution=(640, 480), image_format="jpg",
video_frame_period=0, extract_frames=10, verbose=True)
# Print the resulting list of image files
print("Processed files:")
for file in processed_files:
print(file, file=sys.stderr)
assert os.path.isfile(file)
assert len(processed_files) == len(test_files) - 1 + 10 # 10 is the number of images generated from the video file
def test_process_animated_gif():
# Create a list of test files
test_files = [
"tests/test_animated_gif.gif",
"tests/screenshot.png",
]
output_dir = os.path.join(tempfile.gettempdir(), 'image_path_%s' % str(uuid.uuid4()))
print(output_dir, file=sys.stderr)
# Process the files
processed_files = process_file_list(test_files, output_dir, resolution=(640, 480), image_format="jpg",
video_frame_period=0, extract_frames=10, verbose=True)
# Print the resulting list of image files
print("Processed files:")
for file in processed_files:
print(file, file=sys.stderr)
assert os.path.isfile(file)
assert len(processed_files) == len(test_files) - 1 + 3 # 3 is the number of images generated from the animated gif
def test_process_animated_gif2():
# Create a list of test files
test_files = [
"tests/test_animated_gif.gif",
"tests/screenshot.png"
]
output_dir = os.path.join(tempfile.gettempdir(), 'image_path_%s' % str(uuid.uuid4()))
print(output_dir, file=sys.stderr)
# Process the files
processed_files = process_file_list(test_files, output_dir, verbose=True)
# Print the resulting list of image files
print("Processed files:")
for file in processed_files:
print(file, file=sys.stderr)
assert os.path.isfile(file)
assert len(processed_files) == len(test_files) - 1 + 3 # 3 is the number of images generated from the animated gif
def test_process_animated_gif3():
# Create a list of test files
test_files = [
"tests/test_animated_gif.gif",
"tests/screenshot.png"
]
output_dir = os.path.join(tempfile.gettempdir(), 'image_path_%s' % str(uuid.uuid4()))
print(output_dir, file=sys.stderr)
# Process the files
processed_files = process_file_list(test_files, output_dir, video_frame_period=1, verbose=True)
# Print the resulting list of image files
print("Processed files:")
for file in processed_files:
print(file, file=sys.stderr)
assert os.path.isfile(file)
assert len(processed_files) == len(
test_files) - 1 + 60 # 60 is the number of images generated from the animated gif
def test_process_mixed():
# Create a list of test files
test_files = [
"tests/videotest.mp4",
"https://www.youtube.com/shorts/fRkZCriQQNU",
"tests/screenshot.png",
"tests/test_animated_gif.gif",
]
output_dir = os.path.join(tempfile.gettempdir(), 'image_path_%s' % str(uuid.uuid4()))
print(output_dir, file=sys.stderr)
# Process the files
processed_files = process_file_list(test_files, output_dir, resolution=(640, 480), image_format="jpg",
video_frame_period=0, extract_frames=10, verbose=True)
# Print the resulting list of image files
print("Processed files:")
for file in processed_files:
print(file, file=sys.stderr)
assert os.path.isfile(file)
assert len(processed_files) == len(test_files) - 1 + 29 # 28 is the number of images generated from the video files
def test_update_db():
auth_filename = "test.db"
remove(auth_filename)
from src.db_utils import fetch_user
assert fetch_user(auth_filename, '', verbose=True) == {}
username = "jon"
updates = {
"selection_docs_state": {
"langchain_modes": ["NewMode1"],
"langchain_mode_paths": {"NewMode1": "new_mode_path1"},
"langchain_mode_types": {"NewMode1": "shared"}
}
}
from src.db_utils import append_to_user_data
append_to_user_data(auth_filename, username, updates, verbose=True)
auth_dict = fetch_user(auth_filename, username, verbose=True)
assert auth_dict == {'jon': {'selection_docs_state': {'langchain_mode_paths': {'NewMode1': 'new_mode_path1'},
'langchain_mode_types': {'NewMode1': 'shared'},
'langchain_modes': ['NewMode1']}}}
updates = {
"selection_docs_state": {
"langchain_modes": ["NewMode"],
"langchain_mode_paths": {"NewMode": "new_mode_path"},
"langchain_mode_types": {"NewMode": "shared"}
}
}
from src.db_utils import append_to_users_data
append_to_users_data(auth_filename, updates, verbose=True)
auth_dict = fetch_user(auth_filename, username, verbose=True)
assert auth_dict == {'jon': {'selection_docs_state':
{'langchain_mode_paths': {'NewMode1': 'new_mode_path1',
"NewMode": "new_mode_path"},
'langchain_mode_types': {'NewMode1': 'shared', "NewMode": "shared"},
'langchain_modes': ['NewMode1', 'NewMode']}}}
def test_encode_chat_template():
jinja_template = """
{{ bos_token }}
{%- if messages[0]['role'] == 'system' -%}
{% set system_message = messages[0]['content'].strip() %}
{% set loop_messages = messages[1:] %}
{%- else -%}
{% set system_message = 'This is a chat between a user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user\'s questions based on the context. The assistant should also indicate when the answer cannot be found in the context.' %}
{% set loop_messages = messages %}
{%- endif -%}
System: {{ system_message }}
{% for message in loop_messages %}
{%- if message['role'] == 'user' -%}
User: {{ message['content'].strip() + '\n' }}
{%- else -%}
Assistant: {{ message['content'].strip() + '\n' }}
{%- endif %}
{% if loop.last and message['role'] == 'user' %}
Assistant:
{% endif %}
{% endfor %}
"""
encoded_template = base64_encode_jinja_template(jinja_template)
print("\nEncoded Template:", encoded_template)
model_lock_option = f"""--model_lock="[{{'inference_server': 'vllm_chat:149.130.210.116', 'base_model': 'nvidia/Llama3-ChatQA-1.5-70B', 'visible_models': 'nvidia/Llama3-ChatQA-1.5-70B', 'h2ogpt_key': '62224bfb-c832-4452-81e7-8a4bdabbe164', 'chat_template': '{encoded_template}'}}]"
"""
print("Command-Line Option:")
print(model_lock_option)
# Example of decoding back from the command-line option
command_line_option = model_lock_option.strip('--model_lock=')
# double ast.literal_eval due to quoted quote for model_lock_option
parsed_model_lock_option = ast.literal_eval(ast.literal_eval(command_line_option))
encoded_template_from_option = parsed_model_lock_option[0]['chat_template']
decoded_template = base64_decode_jinja_template(encoded_template_from_option)
print("Decoded Template:")
print(decoded_template)
assert jinja_template == decoded_template
def test_depth():
example_list = [[['Dog', ['/tmp/gradio/image_Dog_d2b19221_6f70_4987_bda8_09be952eae93.png']],
['Who are you?', ['/tmp/gradio/image_Wh_480bd8318d01b570b61e77a9306aef87_c41f.png']],
['Who ar eyou?',
"I apologize for the confusion earlier!\n\nI am LLaMA, an AI assistant developed by Meta AI that can understand and respond to human input in a conversational manner. I'm not a human, but a computer program designed to simulate conversation, answer questions, and even generate text based on the input I receive.\n\nI can assist with a wide range of topics, from general knowledge to entertainment, and even create stories or dialogues. I'm constantly learning and improving my responses based on the interactions I have with users like you.\n\nSo, feel free to ask me anything, and I'll do my best to help!"]],
[], [], [], [], [], [], [], [], [], [], []]
assert get_gradio_depth(example_list) == 3
example_list = [[[['Dog'], ['/tmp/gradio/image_Dog_d2b19221_6f70_4987_bda8_09be952eae93.png']],
['Who are you?', ['/tmp/gradio/image_Wh_480bd8318d01b570b61e77a9306aef87_c41f.png']],
['Who ar eyou?',
"I apologize for the confusion earlier!\n\nI am LLaMA, an AI assistant developed by Meta AI that can understand and respond to human input in a conversational manner. I'm not a human, but a computer program designed to simulate conversation, answer questions, and even generate text based on the input I receive.\n\nI can assist with a wide range of topics, from general knowledge to entertainment, and even create stories or dialogues. I'm constantly learning and improving my responses based on the interactions I have with users like you.\n\nSo, feel free to ask me anything, and I'll do my best to help!"]],
[], [], [], [], [], [], [], [], [], [], []]
assert get_gradio_depth(example_list) == 3
example_list = [[['Dog', "Bad Dog"], ['Who are you?', "Image"], ['Who ar eyou?',
"I apologize for the confusion earlier!\n\nI am LLaMA, an AI assistant developed by Meta AI that can understand and respond to human input in a conversational manner. I'm not a human, but a computer program designed to simulate conversation, answer questions, and even generate text based on the input I receive.\n\nI can assist with a wide range of topics, from general knowledge to entertainment, and even create stories or dialogues. I'm constantly learning and improving my responses based on the interactions I have with users like you.\n\nSo, feel free to ask me anything, and I'll do my best to help!"]],
[], [], [], [], [], [], [], [], [], [], []]
assert get_gradio_depth(example_list) == 3
example_list = [[[['Dog', "Bad Dog"], ['Who are you?', "Image"], ['Who ar eyou?',
"I apologize for the confusion earlier!\n\nI am LLaMA, an AI assistant developed by Meta AI that can understand and respond to human input in a conversational manner. I'm not a human, but a computer program designed to simulate conversation, answer questions, and even generate text based on the input I receive.\n\nI can assist with a wide range of topics, from general knowledge to entertainment, and even create stories or dialogues. I'm constantly learning and improving my responses based on the interactions I have with users like you.\n\nSo, feel free to ask me anything, and I'll do my best to help!"]],
[], [], [], [], [], [], [], [], [], [], []]]
assert get_gradio_depth(example_list) == 4
example_list = [['Dog', "Bad Dog"], ['Who are you?', "Image"]]
assert get_gradio_depth(example_list) == 2
# more cases
example_list = []
assert get_gradio_depth(example_list) == 0
example_list = [1, 2, 3]
assert get_gradio_depth(example_list) == 1
example_list = [[1], [2], [3]]
assert get_gradio_depth(example_list) == 1
example_list = [[[1]], [[2]], [[3]]]
assert get_gradio_depth(example_list) == 2
example_list = [[[[1]]], [[[2]]], [[[3]]]]
assert get_gradio_depth(example_list) == 3
example_list = [[[[[1]]]], [[[[2]]]], [[[[3]]]]]
assert get_gradio_depth(example_list) == 4
example_list = [[], [1], [2, [3]], [[[4]]]]
assert get_gradio_depth(example_list) == 3
example_list = [[], [[[[1]]]], [2, [3]], [[[4]]]]
assert get_gradio_depth(example_list) == 4
example_list = [[], [[[[[1]]]]], [2, [3]], [[[4]]]]
assert get_gradio_depth(example_list) == 5
example_list = [[[[[1]]]], [[[[2]]]], [[[3]]], [[4]], [5]]
assert get_gradio_depth(example_list) == 4
example_list = [[[[[1]]]], [[[[2]]]], [[[3]]], [[4]], [5], []]
assert get_gradio_depth(example_list) == 4
def test_schema_to_typed():
TEST_SCHEMA = {
"type": "object",
"properties": {
"name": {"type": "string"},
"age": {"type": "integer"},
"skills": {
"type": "array",
"items": {"type": "string", "maxLength": 10},
"minItems": 3
},
"work history": {
"type": "array",
"items": {
"type": "object",
"properties": {
"company": {"type": "string"},
"duration": {"type": "string"},
"position": {"type": "string"}
},
"required": ["company", "position"]
}
}
},
"required": ["name", "age", "skills", "work history"]
}
Schema = create_typed_dict(TEST_SCHEMA)
# Example usage of the generated TypedDict
person: Schema = {
"name": "John Doe",
"age": 30,
"skills": ["Python", "TypeScript", "Docker"],
"work history": [
{"company": "TechCorp", "position": "Developer", "duration": "2 years"},
{"company": "DataInc", "position": "Data Scientist"}
]
}
print(person)
def test_genai_schema():
# Usage example
TEST_SCHEMA = {
"type": "object",
"properties": {
"name": {"type": "string"},
"age": {"type": "integer"},
"skills": {
"type": "array",
"items": {"type": "string", "maxLength": 10},
"minItems": 3
},
"work history": {
"type": "array",
"items": {
"type": "object",
"properties": {
"company": {"type": "string"},
"duration": {"type": "string"},
"position": {"type": "string"}
},
"required": ["company", "position"]
}
},
"status": {
"type": "string",
"enum": ["active", "inactive", "on leave"]
}
},
"required": ["name", "age", "skills", "work history", "status"]
}
from src.utils_langchain import convert_to_genai_schema
genai_schema = convert_to_genai_schema(TEST_SCHEMA)
# Print the schema (this will show the structure, but not all details)
print(genai_schema)
# You can now use this schema with the Gemini API
# For example:
# response = model.generate_content(prompt, response_schema=genai_schema)
def test_genai_schema_more():
# Test cases
TEST_SCHEMAS = [
# Object schema
{
"type": "object",
"properties": {
"name": {"type": "string", "description": "The person's name"},
"age": {"type": "integer", "description": "The person's age"},
"height": {"type": "number", "format": "float", "description": "Height in meters"},
"is_student": {"type": "boolean", "description": "Whether the person is a student"},
"skills": {
"type": "array",
"items": {"type": "string"},
"description": "List of skills"
},
"address": {
"type": "object",
"properties": {
"street": {"type": "string"},
"city": {"type": "string"},
"country": {"type": "string"}
},
"required": ["street", "city"],
"description": "Address details"
},
"status": {
"type": "string",
"enum": ["active", "inactive", "on leave"],
"description": "Current status"
}
},
"required": ["name", "age", "is_student"],
"description": "A person's profile"
},
# Array schema
{
"type": "array",
"items": {
"type": "object",
"properties": {
"id": {"type": "integer"},
"name": {"type": "string"}
},
"required": ["id"]
},
"description": "List of items"
},
# String schema
{
"type": "string",
"format": "email",
"description": "Email address"
},
# Number schema
{
"type": "number",
"format": "double",
"description": "A floating-point number"
},
# Boolean schema
{
"type": "boolean",
"description": "A true/false value"
}
]
from src.utils_langchain import convert_to_genai_schema
# Test the conversion
for i, schema in enumerate(TEST_SCHEMAS, 1):
print(f"\nTest Schema {i}:")
genai_schema = convert_to_genai_schema(schema)
print(genai_schema)
def test_pymupdf4llm():
from langchain_community.document_loaders import PyMuPDFLoader
from src.utils_langchain import PyMuPDF4LLMLoader
times_pymupdf = []
times_pymupdf4llm = []
files = [os.path.join('tests', x) for x in os.listdir('tests')]
files += [os.path.join('/home/jon/Downloads/', x) for x in os.listdir('/home/jon/Downloads/')]
files = ['/home/jon/Downloads/Tabasco_Ingredients_Products_Guide.pdf']
for file in files:
if not file.endswith('.pdf'):
continue
t0 = time.time()
doc = PyMuPDFLoader(file).load()
assert doc is not None
print('pymupdf: %s %s %s' % (file, len(doc), time.time() - t0))
times_pymupdf.append((time.time() - t0)/len(doc))
for page in doc:
print(page)
t0 = time.time()
doc = PyMuPDF4LLMLoader(file).load()
assert doc is not None
print('pymupdf4llm: %s %s %s' % (file, len(doc), time.time() - t0))
times_pymupdf4llm.append((time.time() - t0)/len(doc))
for page in doc:
print(page)
if len(times_pymupdf) > 30:
break
print("pymupdf stats:")
compute_stats(times_pymupdf)
print("pymupdf4llm stats:")
compute_stats(times_pymupdf4llm)
def compute_stats(times_in_seconds):
# Compute statistics
min_time = min(times_in_seconds)
max_time = max(times_in_seconds)
average_time = sum(times_in_seconds) / len(times_in_seconds)
# Print the results
print(f"Min time: {min_time} seconds")
print(f"Max time: {max_time} seconds")
print(f"Average time: {average_time} seconds")
|