File size: 61,009 Bytes
3943768
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
import ast
import functools
import json
import os
import sys
import tempfile
import time
import typing
import uuid

import pytest

from tests.utils import wrap_test_forked
from src.prompter_utils import base64_encode_jinja_template, base64_decode_jinja_template
from src.vision.utils_vision import process_file_list
from src.utils import get_list_or_str, read_popen_pipes, get_token_count, reverse_ucurve_list, undo_reverse_ucurve_list, \
    is_uuid4, has_starting_code_block, extract_code_block_content, looks_like_json, get_json, is_full_git_hash, \
    deduplicate_names, handle_json, check_input_type, start_faulthandler, remove, get_gradio_depth, create_typed_dict, \
    execute_cmd_stream
from src.enums import invalid_json_str, user_prompt_for_fake_system_prompt0
from src.prompter import apply_chat_template
import subprocess as sp

start_faulthandler()


@wrap_test_forked
def test_get_list_or_str():
    assert get_list_or_str(['foo', 'bar']) == ['foo', 'bar']
    assert get_list_or_str('foo') == 'foo'
    assert get_list_or_str("['foo', 'bar']") == ['foo', 'bar']


@wrap_test_forked
def test_stream_popen1():
    cmd_python = sys.executable
    python_args = "-q -u"
    python_code = "print('hi')"

    cmd = f"{cmd_python} {python_args} -c \"{python_code}\""

    with sp.Popen(cmd, stdout=sp.PIPE, stderr=sp.PIPE, text=True, shell=True) as p:
        for out_line, err_line in read_popen_pipes(p):
            print(out_line, end='')
            print(err_line, end='')

        p.poll()


@wrap_test_forked
def test_stream_popen2():
    script = """for i in 0 1 2 3 4 5
do
    echo "This messages goes to stdout $i"
    sleep 1
    echo This message goes to stderr >&2
    sleep 1
done
"""
    with open('pieces.sh', 'wt') as f:
        f.write(script)
    os.chmod('pieces.sh', 0o755)
    with sp.Popen(["./pieces.sh"], stdout=sp.PIPE, stderr=sp.PIPE, text=True, shell=True) as p:
        for out_line, err_line in read_popen_pipes(p):
            print(out_line, end='')
            print(err_line, end='')
        p.poll()


@wrap_test_forked
def test_stream_python_execution(capsys):
    script = """
import sys
import time
for i in range(3):
    print(f"This message goes to stdout {i}")
    time.sleep(0.1)
    print(f"This message goes to stderr {i}", file=sys.stderr)
    time.sleep(0.1)
"""

    result = execute_cmd_stream(
        script_content=script,
        cwd=None,
        env=None,
        timeout=5,
        capture_output=True,
        text=True,
        print_tags=True,
        print_literal=False,
    )

    # Capture the printed output
    captured = capsys.readouterr()

    # Print the captured output for verification
    print("Captured output:")
    print(captured.out)

    # Check return code
    assert result.returncode == 0, f"Expected return code 0, but got {result.returncode}"

    # Check stdout content
    expected_stdout = "This message goes to stdout 0\nThis message goes to stdout 1\nThis message goes to stdout 2\n"
    assert expected_stdout in result.stdout, f"Expected stdout to contain:\n{expected_stdout}\nBut got:\n{result.stdout}"

    # Check stderr content
    expected_stderr = "This message goes to stderr 0\nThis message goes to stderr 1\nThis message goes to stderr 2\n"
    assert expected_stderr in result.stderr, f"Expected stderr to contain:\n{expected_stderr}\nBut got:\n{result.stderr}"

    # Check if the output was streamed (should appear in captured output)
    assert "STDOUT: This message goes to stdout 0" in captured.out, "Streaming output not detected in stdout"
    assert "STDERR: This message goes to stderr 0" in captured.out, "Streaming output not detected in stderr"

    print("All tests passed successfully!")


def test_stream_python_execution_empty_lines(capsys):
    script = """
import sys
import time
print()
print("Hello")
print()
print("World", file=sys.stderr)
print()
"""

    result = execute_cmd_stream(
        script_content=script,
        cwd=None,
        env=None,
        timeout=5,
        capture_output=True,
        text=True
    )

    captured = capsys.readouterr()

    print("Captured output:")
    print(captured.out)

    # Check that we only see STDOUT and STDERR for non-empty lines
    assert captured.out.count("STDOUT:") == 1, "Expected only one STDOUT line"
    assert captured.out.count("STDERR:") == 1, "Expected only one STDERR line"
    assert "STDOUT: Hello" in captured.out, "Expected 'Hello' in stdout"
    assert "STDERR: World" in captured.out, "Expected 'World' in stderr"

    print("All tests passed successfully!")


@wrap_test_forked
def test_memory_limit():
    result = execute_cmd_stream(cmd=['python', './tests/memory_hog_script.py'], max_memory_usage=500_000_000)
    assert result.returncode == -15
    print(result.stdout, file=sys.stderr, flush=True)
    print(result.stderr, file=sys.stderr, flush=True)


@pytest.mark.parametrize("text_context_list",
                         ['text_context_list1', 'text_context_list2', 'text_context_list3', 'text_context_list4',
                          'text_context_list5', 'text_context_list6'])
@pytest.mark.parametrize("system_prompt", ['auto', ''])
@pytest.mark.parametrize("context", ['context1', 'context2'])
@pytest.mark.parametrize("iinput", ['iinput1', 'iinput2'])
@pytest.mark.parametrize("chat_conversation", ['chat_conversation1', 'chat_conversation2'])
@pytest.mark.parametrize("instruction", ['instruction1', 'instruction2'])
@wrap_test_forked
def test_limited_prompt(instruction, chat_conversation, iinput, context, system_prompt, text_context_list):
    instruction1 = 'Who are you?'
    instruction2 = ' '.join(['foo_%s ' % x for x in range(0, 500)])
    instruction = instruction1 if instruction == 'instruction1' else instruction2

    iinput1 = 'Extra instruction info'
    iinput2 = ' '.join(['iinput_%s ' % x for x in range(0, 500)])
    iinput = iinput1 if iinput == 'iinput1' else iinput2

    context1 = 'context'
    context2 = ' '.join(['context_%s ' % x for x in range(0, 500)])
    context = context1 if context == 'context1' else context2

    chat_conversation1 = []
    chat_conversation2 = [['user_conv_%s ' % x, 'bot_conv_%s ' % x] for x in range(0, 500)]
    chat_conversation = chat_conversation1 if chat_conversation == 'chat_conversation1' else chat_conversation2

    text_context_list1 = []
    text_context_list2 = ['doc_%s ' % x for x in range(0, 500)]
    text_context_list3 = ['doc_%s ' % x for x in range(0, 10)]
    text_context_list4 = ['documentmany_%s ' % x for x in range(0, 10000)]
    import random, string
    text_context_list5 = [
        'documentlong_%s_%s' % (x, ''.join(random.choices(string.ascii_letters + string.digits, k=300))) for x in
        range(0, 20)]
    text_context_list6 = [
        'documentlong_%s_%s' % (x, ''.join(random.choices(string.ascii_letters + string.digits, k=4000))) for x in
        range(0, 1)]
    if text_context_list == 'text_context_list1':
        text_context_list = text_context_list1
    elif text_context_list == 'text_context_list2':
        text_context_list = text_context_list2
    elif text_context_list == 'text_context_list3':
        text_context_list = text_context_list3
    elif text_context_list == 'text_context_list4':
        text_context_list = text_context_list4
    elif text_context_list == 'text_context_list5':
        text_context_list = text_context_list5
    elif text_context_list == 'text_context_list6':
        text_context_list = text_context_list6
    else:
        raise ValueError("No such %s" % text_context_list)

    from transformers import AutoTokenizer
    tokenizer = AutoTokenizer.from_pretrained('h2oai/h2ogpt-4096-llama2-7b-chat')

    prompt_type = 'llama2'
    prompt_dict = None
    debug = False
    chat = True
    stream_output = True
    from src.prompter import Prompter
    prompter = Prompter(prompt_type, prompt_dict, debug=debug,
                        stream_output=stream_output,
                        system_prompt=system_prompt,
                        tokenizer=tokenizer)

    min_max_new_tokens = 512  # like in get_limited_prompt()
    max_input_tokens = -1
    max_new_tokens = 1024
    model_max_length = 4096

    from src.gen import get_limited_prompt
    estimated_full_prompt, \
        instruction, iinput, context, \
        num_prompt_tokens, max_new_tokens, \
        num_prompt_tokens0, num_prompt_tokens_actual, \
        history_to_use_final, external_handle_chat_conversation, \
        top_k_docs_trial, one_doc_size, truncation_generation, system_prompt, _, _ = \
        get_limited_prompt(instruction, iinput, tokenizer,
                           prompter=prompter,
                           max_new_tokens=max_new_tokens,
                           context=context,
                           chat_conversation=chat_conversation,
                           text_context_list=text_context_list,
                           model_max_length=model_max_length,
                           min_max_new_tokens=min_max_new_tokens,
                           max_input_tokens=max_input_tokens,
                           verbose=True)
    print('%s -> %s or %s: len(history_to_use_final): %s top_k_docs_trial=%s one_doc_size: %s' % (num_prompt_tokens0,
                                                                                                  num_prompt_tokens,
                                                                                                  num_prompt_tokens_actual,
                                                                                                  len(history_to_use_final),
                                                                                                  top_k_docs_trial,
                                                                                                  one_doc_size),
          flush=True, file=sys.stderr)
    assert num_prompt_tokens <= model_max_length + min_max_new_tokens
    # actual might be less due to token merging for characters across parts, but not more
    assert num_prompt_tokens >= num_prompt_tokens_actual
    assert num_prompt_tokens_actual <= model_max_length

    if top_k_docs_trial > 0:
        text_context_list = text_context_list[:top_k_docs_trial]
    elif one_doc_size is not None:
        text_context_list = [text_context_list[0][:one_doc_size]]
    else:
        text_context_list = []
    assert sum([get_token_count(x, tokenizer) for x in text_context_list]) <= model_max_length


@wrap_test_forked
def test_reverse_ucurve():
    ab = []
    a = [1, 2, 3, 4, 5, 6, 7, 8]
    b = [2, 4, 6, 8, 7, 5, 3, 1]
    ab.append([a, b])
    a = [1]
    b = [1]
    ab.append([a, b])
    a = [1, 2]
    b = [2, 1]
    ab.append([a, b])
    a = [1, 2, 3]
    b = [2, 3, 1]
    ab.append([a, b])
    a = [1, 2, 3, 4]
    b = [2, 4, 3, 1]
    ab.append([a, b])

    for a, b in ab:
        assert reverse_ucurve_list(a) == b
        assert undo_reverse_ucurve_list(b) == a


@wrap_test_forked
def check_gradio():
    import gradio as gr
    assert gr.__h2oai__


@wrap_test_forked
def test_is_uuid4():
    # Example usage:
    test_strings = [
        "f47ac10b-58cc-4372-a567-0e02b2c3d479",  # Valid UUID v4
        "not-a-uuid",  # Invalid
        "12345678-1234-1234-1234-123456789abc",  # Valid UUID v4
        "xyz"  # Invalid
    ]
    # "f47ac10b-58cc-4372-a567-0e02b2c3d479": True (Valid UUID v4)
    # "not-a-uuid": False (Invalid)
    # "12345678-1234-1234-1234-123456789abc": False (Invalid, even though it resembles a UUID, it doesn't follow the version 4 UUID pattern)
    # "xyz": False (Invalid)

    # Check each string and print whether it's a valid UUID v4
    assert [is_uuid4(s) for s in test_strings] == [True, False, False, False]


@wrap_test_forked
def test_is_git_hash():
    # Example usage:
    hashes = ["1a3b5c7d9e1a3b5c7d9e1a3b5c7d9e1a3b5c7d9e", "1G3b5c7d9e1a3b5c7d9e1a3b5c7d9e1a3b5c7d9e", "1a3b5c7d"]

    assert [is_full_git_hash(h) for h in hashes] == [True, False, False]


@wrap_test_forked
def test_chat_template():
    instruction = "Who are you?"
    system_prompt = "Be kind"
    history_to_use = [('Are you awesome?', "Yes I'm awesome.")]
    image_file = []
    other_base_models = ['h2oai/mixtral-gm-rag-experimental-v2']
    supports_system_prompt = ['meta-llama/Llama-2-7b-chat-hf', 'openchat/openchat-3.5-1210', 'SeaLLMs/SeaLLM-7B-v2',
                              'h2oai/h2ogpt-gm-experimental']
    base_models = supports_system_prompt + other_base_models

    for base_model in base_models:
        from transformers import AutoTokenizer
        tokenizer = AutoTokenizer.from_pretrained(base_model)

        prompt = apply_chat_template(instruction, system_prompt, history_to_use, image_file,
                                     tokenizer,
                                     user_prompt_for_fake_system_prompt=user_prompt_for_fake_system_prompt0,
                                     verbose=True)

        assert 'Be kind' in prompt  # put into pre-conversation if no actual system prompt
        assert instruction in prompt
        assert history_to_use[0][0] in prompt
        assert history_to_use[0][1] in prompt


@wrap_test_forked
def test_chat_template_images():
    history_to_use = [('Are you awesome?', "Yes I'm awesome.")]
    base_model = 'OpenGVLab/InternVL-Chat-V1-5'

    from transformers import AutoTokenizer
    tokenizer = AutoTokenizer.from_pretrained(base_model, trust_remote_code=True)

    messages = [{'role': 'system',
                 'content': 'You are h2oGPTe, an expert question-answering AI system created by H2O.ai that performs like GPT-4 by OpenAI.'},
                {'role': 'user',
                 'content': 'What is the name of the tower in one of the images?'}]
    prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
    assert prompt is not None

    (instruction, system_prompt, chat_conversation, image_file,
     user_prompt_for_fake_system_prompt,
     test_only, verbose) = ('What is the name of the tower in one of the images?',
                            'You are h2oGPTe, an expert question-answering AI system created by H2O.ai that performs like GPT-4 by OpenAI.',
                            [], ['/tmp/image_file_0f5f011d-c907-4836-9f38-0ba579b45ffc.jpeg',
                                 '/tmp/image_file_60dce245-af39-4f8c-9651-df9ae0bd0afa.jpeg',
                                 '/tmp/image_file_e0b32625-9de3-40d7-98fb-c2e6368d6d73.jpeg'], None, False, False)

    prompt = apply_chat_template(instruction, system_prompt, history_to_use, image_file,
                                 tokenizer,
                                 user_prompt_for_fake_system_prompt=user_prompt_for_fake_system_prompt0,
                                 test_only=test_only,
                                 verbose=verbose)

    assert 'h2oGPTe' in prompt  # put into pre-conversation if no actual system prompt
    assert instruction in prompt
    assert history_to_use[0][0] in prompt
    assert history_to_use[0][1] in prompt


@wrap_test_forked
def test_partial_codeblock():
    json.dumps(invalid_json_str)

    # Example usages:
    example_1 = "```code block starts immediately"
    example_2 = "\n    ```code block after newline and spaces"
    example_3 = "<br>```code block after HTML line break"
    example_4 = "This is a regular text without a code block."

    assert has_starting_code_block(example_1)
    assert has_starting_code_block(example_2)
    assert has_starting_code_block(example_3)
    assert not has_starting_code_block(example_4)

    # Example usages:
    example_stream_1 = "```code block content here```more text"
    example_stream_2 = "```code block content with no end yet..."
    example_stream_3 = "```\ncode block content here\n```\nmore text"
    example_stream_4 = "```\ncode block content \nwith no end yet..."
    example_stream_5 = "\n ```\ncode block content here\n```\nmore text"
    example_stream_6 = "\n ```\ncode block content \nwith no end yet..."

    example_stream_7 = "more text"

    assert extract_code_block_content(example_stream_1) == "block content here"
    assert extract_code_block_content(example_stream_2) == "block content with no end yet..."
    assert extract_code_block_content(example_stream_3) == "code block content here"
    assert extract_code_block_content(example_stream_4) == "code block content \nwith no end yet..."
    assert extract_code_block_content(example_stream_5) == "code block content here"
    assert extract_code_block_content(example_stream_6) == "code block content \nwith no end yet..."
    assert extract_code_block_content(example_stream_7) == ""

    # Assuming the function extract_code_block_content is defined as previously described.

    # Test case 1: Empty string
    assert extract_code_block_content("") is '', "Test 1 Failed: Should return None for empty string"

    # Test case 2: No starting code block
    assert extract_code_block_content(
        "No code block here") is '', "Test 2 Failed: Should return None if there's no starting code block"

    # Test case 3: Code block at the start without ending
    assert extract_code_block_content(
        "```text\nStarting without end") == "Starting without end", "Test 3 Failed: Should return the content of code block starting at the beginning"

    # Test case 4: Code block at the end without starting
    assert extract_code_block_content(
        "Text before code block```text\nEnding without start") == "Ending without start", "Test 4 Failed: Should extract text following starting delimiter regardless of position"

    # Test case 5: Code block in the middle with proper closing
    assert extract_code_block_content(
        "Text before ```text\ncode block``` text after") == "code block", "Test 5 Failed: Should extract the code block in the middle"

    # Test case 6: Multiple code blocks, only extracts the first one
    assert extract_code_block_content(
        "```text\nFirst code block``` Text in between ```Second code block```") == "First code block", "Test 6 Failed: Should only extract the first code block"

    # Test case 7: Code block with only whitespace inside
    assert extract_code_block_content(
        "```   ```") == "", "Test 7 Failed: Should return an empty string for a code block with only whitespace"

    # Test case 8: Newline characters inside code block
    assert extract_code_block_content(
        "```\nLine 1\nLine 2\n```") == "Line 1\nLine 2", "Test 8 Failed: Should preserve newline characters within code block but not leading/trailing newlines due to .strip()"

    # Test case 9: Code block with special characters
    special_characters = "```text\nSpecial characters !@#$%^&*()```"
    assert extract_code_block_content(
        special_characters) == "Special characters !@#$%^&*()", "Test 9 Failed: Should correctly handle special characters"

    # Test case 10: No starting code block but with ending delimiter
    assert extract_code_block_content(
        "Text with ending code block delimiter```") is '', "Test 10 Failed: Should return None if there's no starting code block but with an ending delimiter"

    # Test cases
    assert looks_like_json('{ "key": "value" }'), "Failed: JSON object"
    assert looks_like_json('[1, 2, 3]'), "Failed: JSON array"
    assert looks_like_json(' "string" '), "Failed: JSON string"
    assert looks_like_json('null'), "Failed: JSON null"
    assert looks_like_json(' true '), "Failed: JSON true"
    assert looks_like_json('123'), "Failed: JSON number"
    assert not looks_like_json('Just a plain text'), "Failed: Not JSON"
    assert not looks_like_json('```code block```'), "Failed: Code block"

    # Test cases
    get_json_nofixup = functools.partial(get_json, fixup=False)
    assert get_json_nofixup(
        '{"key": "value"}') == '{"key": "value"}', "Failed: Valid JSON object should be returned as is."
    assert get_json_nofixup('[1, 2, 3]') == '[1, 2, 3]', "Failed: Valid JSON array should be returned as is."
    assert get_json_nofixup('```text\nSome code```') == 'Some code', "Failed: Code block content should be returned."
    assert get_json_nofixup(
        'Some random text') == invalid_json_str, "Failed: Random text should lead to 'invalid json' return."
    assert get_json_nofixup(
        '```{"key": "value in code block"}```') == '{"key": "value in code block"}', "Failed: JSON in code block should be correctly extracted and returned."
    assert get_json_nofixup(
        '```code\nmore code```') == 'more code', "Failed: Multi-line code block content should be returned."
    assert get_json_nofixup(
        '```\n{"key": "value"}\n```') == '{"key": "value"}', "Failed: JSON object in code block with new lines should be correctly extracted and returned."
    assert get_json_nofixup('') == invalid_json_str, "Failed: Empty string should lead to 'invalid json' return."
    assert get_json_nofixup(
        'True') == invalid_json_str, "Failed: Non-JSON 'True' value should lead to 'invalid json' return."
    assert get_json_nofixup(
        '{"incomplete": true,') == '{"incomplete": true,', "Failed: Incomplete JSON should still be considered as JSON and returned as is."

    answer = """Here is an example JSON that fits the provided schema:
```json
{
  "name": "John Doe",
  "age": 30,
  "skills": ["Java", "Python", "JavaScript"],
  "work history": [
    {
      "company": "ABC Corp",
      "duration": "2018-2020",
      "position": "Software Engineer"
    },
    {
      "company": "XYZ Inc",
      "position": "Senior Software Engineer",
      "duration": "2020-Present"
    }
  ]
}
```
Note that the `work history` array contains two objects, each with a `company`, `duration`, and `position` property. The `skills` array contains three string elements, each with a maximum length of 10 characters. The `name` and `age` properties are also present and are of the correct data types."""
    assert get_json_nofixup(answer) == """{
  "name": "John Doe",
  "age": 30,
  "skills": ["Java", "Python", "JavaScript"],
  "work history": [
    {
      "company": "ABC Corp",
      "duration": "2018-2020",
      "position": "Software Engineer"
    },
    {
      "company": "XYZ Inc",
      "position": "Senior Software Engineer",
      "duration": "2020-Present"
    }
  ]
}"""

    # JSON within a code block
    json_in_code_block = """
    Here is an example JSON:
    ```json
    {"key": "value"}
    ```
    """

    # Plain JSON response
    plain_json_response = '{"key": "value"}'

    # Invalid JSON or non-JSON response
    non_json_response = "This is just some text."

    # Tests
    assert get_json_nofixup(
        json_in_code_block).strip() == '{"key": "value"}', "Should extract and return JSON from a code block."
    assert get_json_nofixup(plain_json_response) == '{"key": "value"}', "Should return plain JSON as is."
    assert get_json_nofixup(
        non_json_response) == invalid_json_str, "Should return 'invalid json' for non-JSON response."

    # Test with the provided example
    stream_content = """ {\n \"name\": \"John Doe\",\n \"email\": \"[email protected]\",\n \"jobTitle\": \"Software Developer\",\n \"department\": \"Technology\",\n \"hireDate\": \"2020-01-01\",\n \"employeeId\": 123456,\n \"manager\": {\n \"name\": \"Jane Smith\",\n \"email\": \"[email protected]\",\n \"jobTitle\": \"Senior Software Developer\"\n },\n \"skills\": [\n \"Java\",\n \"Python\",\n \"JavaScript\",\n \"React\",\n \"Spring\"\n ],\n \"education\": {\n \"degree\": \"Bachelor's Degree\",\n \"field\": \"Computer Science\",\n \"institution\": \"Example University\",\n \"graduationYear\": 2018\n },\n \"awards\": [\n {\n \"awardName\": \"Best Developer of the Year\",\n \"year\": 2021\n },\n {\n \"awardName\": \"Most Valuable Team Player\",\n \"year\": 2020\n }\n ],\n \"performanceRatings\": {\n \"communication\": 4.5,\n \"teamwork\": 4.8,\n \"creativity\": 4.2,\n \"problem-solving\": 4.6,\n \"technical skills\": 4.7\n }\n}\n```"""
    extracted_content = get_json_nofixup(stream_content)
    assert extracted_content == """{\n \"name\": \"John Doe\",\n \"email\": \"[email protected]\",\n \"jobTitle\": \"Software Developer\",\n \"department\": \"Technology\",\n \"hireDate\": \"2020-01-01\",\n \"employeeId\": 123456,\n \"manager\": {\n \"name\": \"Jane Smith\",\n \"email\": \"[email protected]\",\n \"jobTitle\": \"Senior Software Developer\"\n },\n \"skills\": [\n \"Java\",\n \"Python\",\n \"JavaScript\",\n \"React\",\n \"Spring\"\n ],\n \"education\": {\n \"degree\": \"Bachelor's Degree\",\n \"field\": \"Computer Science\",\n \"institution\": \"Example University\",\n \"graduationYear\": 2018\n },\n \"awards\": [\n {\n \"awardName\": \"Best Developer of the Year\",\n \"year\": 2021\n },\n {\n \"awardName\": \"Most Valuable Team Player\",\n \"year\": 2020\n }\n ],\n \"performanceRatings\": {\n \"communication\": 4.5,\n \"teamwork\": 4.8,\n \"creativity\": 4.2,\n \"problem-solving\": 4.6,\n \"technical skills\": 4.7\n }\n}"""


def test_partial_codeblock2():
    example_1 = "```code block starts immediately"
    example_2 = "\n    ```code block after newline and spaces"
    example_3 = "<br>```code block after HTML line break"
    example_4 = "This is a regular text without a code block."

    assert has_starting_code_block(example_1)
    assert has_starting_code_block(example_2)
    assert has_starting_code_block(example_3)
    assert not has_starting_code_block(example_4)


def test_extract_code_block_content():
    example_stream_1 = "```code block content here```more text"
    example_stream_2 = "```code block content with no end yet..."
    example_stream_3 = "```\ncode block content here\n```\nmore text"
    example_stream_4 = "```\ncode block content \nwith no end yet..."
    example_stream_5 = "\n ```\ncode block content here\n```\nmore text"
    example_stream_6 = "\n ```\ncode block content \nwith no end yet..."
    example_stream_7 = "more text"
    example_stream_8 = """```markdown
```json
{
  "Employee": {
    "Name": "Henry",
    "Title": "AI Scientist",
    "Department": "AI",
    "Location": "San Francisco",
    "Contact": {
      "Email": "[email protected]",
      "Phone": "+1-234-567-8901"
    },
    "Profile": {
      "Education": [
        {
          "Institution": "Stanford University",
          "Degree": "Ph.D.",
          "Field": "Computer Science"
        },
        {
          "Institution": "University of California, Berkeley",
          "Degree": "M.S.",
          "Field": "Artificial Intelligence"
        }
      ],
      "Experience": [
        {
          "Company": "Google",
          "Role": "Senior AI Engineer",
          "Duration": "5 years"
        },
        {
          "Company": "Facebook",
          "Role": "Principal AI Engineer",
          "Duration": "3 years"
        }
      ],
      "Skills": [
        "Python",
        "TensorFlow",
        "PyTorch",
        "Natural Language Processing",
        "Machine Learning"
      ],
      "Languages": [
        "English",
        "French",
        "Spanish"
      ],
      "Certifications": [
        {
          "Name": "Certified AI Professional",
          "Issuing Body": "AI Professional Association"
        },
        {
          "Name": "Advanced AI Course Certificate",
          "Issuing Body": "AI Institute"
        }
      ]
    }
  }
}
```
"""
    assert extract_code_block_content(example_stream_1) == "block content here"
    assert extract_code_block_content(example_stream_2) == "block content with no end yet..."
    assert extract_code_block_content(example_stream_3) == "code block content here"
    assert extract_code_block_content(example_stream_4) == "code block content \nwith no end yet..."
    assert extract_code_block_content(example_stream_5) == "code block content here"
    assert extract_code_block_content(example_stream_6) == "code block content \nwith no end yet..."
    assert extract_code_block_content(example_stream_7) == ""
    expected8 = """{
  "Employee": {
    "Name": "Henry",
    "Title": "AI Scientist",
    "Department": "AI",
    "Location": "San Francisco",
    "Contact": {
      "Email": "[email protected]",
      "Phone": "+1-234-567-8901"
    },
    "Profile": {
      "Education": [
        {
          "Institution": "Stanford University",
          "Degree": "Ph.D.",
          "Field": "Computer Science"
        },
        {
          "Institution": "University of California, Berkeley",
          "Degree": "M.S.",
          "Field": "Artificial Intelligence"
        }
      ],
      "Experience": [
        {
          "Company": "Google",
          "Role": "Senior AI Engineer",
          "Duration": "5 years"
        },
        {
          "Company": "Facebook",
          "Role": "Principal AI Engineer",
          "Duration": "3 years"
        }
      ],
      "Skills": [
        "Python",
        "TensorFlow",
        "PyTorch",
        "Natural Language Processing",
        "Machine Learning"
      ],
      "Languages": [
        "English",
        "French",
        "Spanish"
      ],
      "Certifications": [
        {
          "Name": "Certified AI Professional",
          "Issuing Body": "AI Professional Association"
        },
        {
          "Name": "Advanced AI Course Certificate",
          "Issuing Body": "AI Institute"
        }
      ]
    }
  }
}"""
    assert extract_code_block_content(example_stream_8) == expected8


@pytest.mark.parametrize("method", ['repair_json', 'get_json'])
@wrap_test_forked
def test_repair_json(method):
    a = """{
    "Supplementary Leverage Ratio": [7.0, 5.8, 5.7],
    "Liquidity Metrics": {
    "End of Period Liabilities and Equity": [2260, 2362, 2291],
    "Liquidity Coverage Ratio": [118, 115, 115],
    "Trading-Related Liabilities(7)": [84, 72, 72],
    "Total Available Liquidty Resources": [972, 994, 961],
    "Deposits Balance Sheet": [140, 166, 164],
    "Other Liabilities(7)": {},
    "LTD": {},
    "Equity": {
    "Book Value per share": [86.43, 92.16, 92.21],
    "Tangible Book Value per share": [73.67, 79.07, 79.16]
    }
    },
    "Capital and Balance Sheet ($ in B)": {
    "Risk-based Capital Metrics(1)": {
    "End of Period Assets": [2260, 2362, 2291],
    "CET1 Capital": [147, 150, 150],
    "Standardized RWAs": [1222, 1284, 1224],
    "Investments, net": {},
    "CET1 Capital Ratio - Standardized": [12.1, 11.7, 12.2],
    "Advanced RWAs": [1255, 1265, 1212],
    "Trading-Related Assets(5)": [670, 681, 659],
    "CET1 Capital Ratio - Advanced": [11.7, 11.8, 12.4],
    "Loans, net(6)": {},
    "Other(5)": [182, 210, 206]
    }
    }
    }
    
    Note: Totals may not sum due to rounding. LTD: Long-term debt. All information for 4Q21 is preliminary. All footnotes are presented on Slide 26."""

    from json_repair import repair_json

    for i in range(len(a)):
        text = a[:i]
        t0 = time.time()
        if method == 'repair_json':
            good_json_string = repair_json(text)
        else:
            good_json_string = get_json(text)
        if i > 50:
            assert len(good_json_string) > 5
        tdelta = time.time() - t0
        assert tdelta < 0.005, "Too slow: %s" % tdelta
        print("%s : %s : %s" % (i, tdelta, good_json_string))
        json.loads(good_json_string)


def test_json_repair_more():
    response0 = """```markdown
    ```json
    {
      "Employee": {
        "Name": "Henry",
        "Title": "AI Scientist",
        "Department": "AI",
        "Location": "San Francisco",
        "Contact": {
          "Email": "[email protected]",
          "Phone": "+1-234-567-8901"
        },
        "Profile": {
          "Education": [
            {
              "Institution": "Stanford University",
              "Degree": "Ph.D.",
              "Field": "Computer Science"
            },
            {
              "Institution": "University of California, Berkeley",
              "Degree": "M.S.",
              "Field": "Artificial Intelligence"
            }
          ],
          "Experience": [
            {
              "Company": "Google",
              "Role": "Senior AI Engineer",
              "Duration": "5 years"
            },
            {
              "Company": "Facebook",
              "Role": "Principal AI Engineer",
              "Duration": "3 years"
            }
          ],
          "Skills": [
            "Python",
            "TensorFlow",
            "PyTorch",
            "Natural Language Processing",
            "Machine Learning"
          ],
          "Languages": [
            "English",
            "French",
            "Spanish"
          ],
          "Certifications": [
            {
              "Name": "Certified AI Professional",
              "Issuing Body": "AI Professional Association"
            },
            {
              "Name": "Advanced AI Course Certificate",
              "Issuing Body": "AI Institute"
            }
          ]
        }
      }
    }
    ```
    """
    from json_repair import repair_json
    response = repair_json(response0)
    assert response.startswith('{')

    response0 = """  Here is an example employee profile in JSON format, with keys that are less than 64 characters and made of only alphanumerics, underscores, or hyphens:
    ```json
    {
      "employee_id": 1234,
      "name": "John Doe",
      "email": "[email protected]",
      "job_title": "Software Engineer",
      "department": "Engineering",
      "hire_date": "2020-01-01",
      "salary": 100000,
      "manager_id": 5678
    }
    ```
    In Markdown, you can display this JSON code block like this:
    ```json
    ```
    {
      "employee_id": 1234,
      "name": "John Doe",
      "email": "[email protected]",
      "job_title": "Software Engineer",
      "department": "Engineering",
      "hire_date": "2020-01-01",
      "salary": 100000,
      "manager_id": 5678
    }
    ```
    This will display the JSON code block with proper formatting and highlighting.
    """
    # from json_repair import repair_json
    from src.utils import get_json, repair_json_by_type
    import json

    response = repair_json_by_type(response0)
    assert json.loads(response)['employee_id'] == 1234
    print(response)

    response = get_json(response0, json_schema_type='object')
    assert json.loads(response)['employee_id'] == 1234
    print(response)


@wrap_test_forked
def test_dedup():
    # Example usage:
    names_list = ['Alice', 'Bob', 'Alice', 'Charlie', 'Bob', 'Alice']
    assert deduplicate_names(names_list) == ['Alice', 'Bob', 'Alice_1', 'Charlie', 'Bob_1', 'Alice_2']


# Test cases
def test_handle_json_normal():
    normal_json = {
        "name": "Henry",
        "age": 35,
        "skills": ["AI", "Machine Learning", "Data Science"],
        "workhistory": [
            {"company": "TechCorp", "duration": "2015-2020", "position": "Senior AI Scientist"},
            {"company": "AI Solutions", "duration": "2010-2015", "position": "AI Scientist"}
        ]
    }
    assert handle_json(normal_json) == normal_json


def test_handle_json_schema():
    schema_json = {
        "name": {"type": "string", "value": "Henry"},
        "age": {"type": "integer", "value": 35},
        "skills": {"type": "array", "items": [
            {"type": "string", "value": "AI", "maxLength": 10},
            {"type": "string", "value": "Machine Learning", "maxLength": 10},
            {"type": "string", "value": "Data Science", "maxLength": 10}
        ], "minItems": 3},
        "workhistory": {"type": "array", "items": [
            {"type": "object", "properties": {
                "company": {"type": "string", "value": "TechCorp"},
                "duration": {"type": "string", "value": "2015-2020"},
                "position": {"type": "string", "value": "Senior AI Scientist"}
            }, "required": ["company", "position"]},
            {"type": "object", "properties": {
                "company": {"type": "string", "value": "AI Solutions"},
                "duration": {"type": "string", "value": "2010-2015"},
                "position": {"type": "string", "value": "AI Scientist"}
            }, "required": ["company", "position"]}
        ]}
    }
    expected_result = {
        "name": "Henry",
        "age": 35,
        "skills": ["AI", "Machine Learning", "Data Science"],
        "workhistory": [
            {"company": "TechCorp", "duration": "2015-2020", "position": "Senior AI Scientist"},
            {"company": "AI Solutions", "duration": "2010-2015", "position": "AI Scientist"}
        ]
    }
    assert handle_json(schema_json) == expected_result


def test_handle_json_mixed():
    mixed_json = {
        "name": "Henry",
        "age": {"type": "integer", "value": 35},
        "skills": ["AI", {"type": "string", "value": "Machine Learning"}, "Data Science"],
        "workhistory": {"type": "array", "items": [
            {"type": "object", "properties": {
                "company": {"type": "string", "value": "TechCorp"},
                "duration": {"type": "string", "value": "2015-2020"},
                "position": {"type": "string", "value": "Senior AI Scientist"}
            }, "required": ["company", "position"]},
            {"company": "AI Solutions", "duration": "2010-2015", "position": "AI Scientist"}
        ]}
    }
    expected_result = {
        "name": "Henry",
        "age": 35,
        "skills": ["AI", "Machine Learning", "Data Science"],
        "workhistory": [
            {"company": "TechCorp", "duration": "2015-2020", "position": "Senior AI Scientist"},
            {"company": "AI Solutions", "duration": "2010-2015", "position": "AI Scientist"}
        ]
    }
    assert handle_json(mixed_json) == expected_result


def test_handle_json_empty():
    empty_json = {}
    assert handle_json(empty_json) == empty_json


def test_handle_json_no_schema():
    no_schema_json = {
        "name": {"first": "Henry", "last": "Smith"},
        "age": 35,
        "skills": ["AI", "Machine Learning", "Data Science"]
    }
    assert handle_json(no_schema_json) == no_schema_json


def test_json_repair_on_string():
    from json_repair import repair_json
    response0 = 'According to the information provided, the best safety assessment enum label is "Safe".'

    json_schema_type = 'object'
    response = get_json(response0, json_schema_type=json_schema_type)
    response = json.loads(response)
    assert isinstance(response, dict) and not response

    response = repair_json(response0)
    assert isinstance(response, str) and response in ['""', """''""", '', None]


# Example usage converted to pytest test cases
def test_check_input_type():
    # Valid URL
    assert check_input_type("https://example.com") == 'url'

    # Valid file path (Note: Adjust the path to match an actual file on your system for the test to pass)
    assert check_input_type("tests/receipt.jpg") == 'file'

    # Valid base64 encoded image
    assert check_input_type("b'...") == 'base64'

    # Non-string inputs
    assert check_input_type(b"bytes data") == 'unknown'
    assert check_input_type(12345) == 'unknown'
    assert check_input_type(["list", "of", "strings"]) == 'unknown'

    # Invalid URL
    assert check_input_type("invalid://example.com") == 'unknown'

    # Invalid file path
    assert check_input_type("/path/to/invalid/file.txt") == 'unknown'

    # Plain string
    assert check_input_type("just a string") == 'unknown'


def test_process_file_list():
    # Create a list of test files
    test_files = [
        "tests/videotest.mp4",
        "tests/dental.png",
        "tests/fastfood.jpg",
        "tests/ocr2.png",
        "tests/receipt.jpg",
        "tests/revenue.png",
        "tests/jon.png",
        "tests/ocr1.png",
        "tests/ocr3.png",
        "tests/screenshot.png",
    ]

    output_dir = os.path.join(tempfile.gettempdir(), 'image_path_%s' % str(uuid.uuid4()))
    print(output_dir, file=sys.stderr)

    # Process the files
    processed_files = process_file_list(test_files, output_dir, resolution=(640, 480), image_format="jpg", verbose=True)

    # Print the resulting list of image files
    print("Processed files:")
    for file in processed_files:
        print(file, file=sys.stderr)
        assert os.path.isfile(file)
    assert len(processed_files) == len(
        test_files) - 1 + 17 + 4  # 17 is the number of images generated from the video file


def test_process_file_list_extract_frames():
    # Create a list of test files
    test_files = [
        "tests/videotest.mp4",
        "tests/dental.png",
        "tests/fastfood.jpg",
        "tests/ocr2.png",
        "tests/receipt.jpg",
        "tests/revenue.png",
        "tests/jon.png",
        "tests/ocr1.png",
        "tests/ocr3.png",
        "tests/screenshot.png",
    ]

    output_dir = os.path.join(tempfile.gettempdir(), 'image_path_%s' % str(uuid.uuid4()))
    print(output_dir, file=sys.stderr)

    # Process the files
    processed_files = process_file_list(test_files, output_dir, resolution=(640, 480), image_format="jpg",
                                        video_frame_period=0, extract_frames=10, verbose=True)

    # Print the resulting list of image files
    print("Processed files:")
    for file in processed_files:
        print(file, file=sys.stderr)
        assert os.path.isfile(file)
    assert len(processed_files) == len(test_files) - 1 + 10  # 10 is the number of images generated from the video file


def test_process_youtube():
    # Create a list of test files
    test_files = [
        "https://www.youtube.com/shorts/fRkZCriQQNU",
        "tests/screenshot.png"
    ]

    output_dir = os.path.join(tempfile.gettempdir(), 'image_path_%s' % str(uuid.uuid4()))
    print(output_dir, file=sys.stderr)

    # Process the files
    processed_files = process_file_list(test_files, output_dir, resolution=(640, 480), image_format="jpg",
                                        video_frame_period=0, extract_frames=10, verbose=True)

    # Print the resulting list of image files
    print("Processed files:")
    for file in processed_files:
        print(file, file=sys.stderr)
        assert os.path.isfile(file)
    assert len(processed_files) == len(test_files) - 1 + 10  # 10 is the number of images generated from the video file


def test_process_animated_gif():
    # Create a list of test files
    test_files = [
        "tests/test_animated_gif.gif",
        "tests/screenshot.png",
    ]

    output_dir = os.path.join(tempfile.gettempdir(), 'image_path_%s' % str(uuid.uuid4()))
    print(output_dir, file=sys.stderr)

    # Process the files
    processed_files = process_file_list(test_files, output_dir, resolution=(640, 480), image_format="jpg",
                                        video_frame_period=0, extract_frames=10, verbose=True)

    # Print the resulting list of image files
    print("Processed files:")
    for file in processed_files:
        print(file, file=sys.stderr)
        assert os.path.isfile(file)
    assert len(processed_files) == len(test_files) - 1 + 3  # 3 is the number of images generated from the animated gif


def test_process_animated_gif2():
    # Create a list of test files
    test_files = [
        "tests/test_animated_gif.gif",
        "tests/screenshot.png"
    ]

    output_dir = os.path.join(tempfile.gettempdir(), 'image_path_%s' % str(uuid.uuid4()))
    print(output_dir, file=sys.stderr)

    # Process the files
    processed_files = process_file_list(test_files, output_dir, verbose=True)

    # Print the resulting list of image files
    print("Processed files:")
    for file in processed_files:
        print(file, file=sys.stderr)
        assert os.path.isfile(file)
    assert len(processed_files) == len(test_files) - 1 + 3  # 3 is the number of images generated from the animated gif


def test_process_animated_gif3():
    # Create a list of test files
    test_files = [
        "tests/test_animated_gif.gif",
        "tests/screenshot.png"
    ]

    output_dir = os.path.join(tempfile.gettempdir(), 'image_path_%s' % str(uuid.uuid4()))
    print(output_dir, file=sys.stderr)

    # Process the files
    processed_files = process_file_list(test_files, output_dir, video_frame_period=1, verbose=True)

    # Print the resulting list of image files
    print("Processed files:")
    for file in processed_files:
        print(file, file=sys.stderr)
        assert os.path.isfile(file)
    assert len(processed_files) == len(
        test_files) - 1 + 60  # 60 is the number of images generated from the animated gif


def test_process_mixed():
    # Create a list of test files
    test_files = [
        "tests/videotest.mp4",
        "https://www.youtube.com/shorts/fRkZCriQQNU",
        "tests/screenshot.png",
        "tests/test_animated_gif.gif",
    ]

    output_dir = os.path.join(tempfile.gettempdir(), 'image_path_%s' % str(uuid.uuid4()))
    print(output_dir, file=sys.stderr)

    # Process the files
    processed_files = process_file_list(test_files, output_dir, resolution=(640, 480), image_format="jpg",
                                        video_frame_period=0, extract_frames=10, verbose=True)

    # Print the resulting list of image files
    print("Processed files:")
    for file in processed_files:
        print(file, file=sys.stderr)
        assert os.path.isfile(file)
    assert len(processed_files) == len(test_files) - 1 + 29  # 28 is the number of images generated from the video files


def test_update_db():
    auth_filename = "test.db"
    remove(auth_filename)
    from src.db_utils import fetch_user
    assert fetch_user(auth_filename, '', verbose=True) == {}

    username = "jon"
    updates = {
        "selection_docs_state": {
            "langchain_modes": ["NewMode1"],
            "langchain_mode_paths": {"NewMode1": "new_mode_path1"},
            "langchain_mode_types": {"NewMode1": "shared"}
        }
    }
    from src.db_utils import append_to_user_data
    append_to_user_data(auth_filename, username, updates, verbose=True)

    auth_dict = fetch_user(auth_filename, username, verbose=True)

    assert auth_dict == {'jon': {'selection_docs_state': {'langchain_mode_paths': {'NewMode1': 'new_mode_path1'},
                                                          'langchain_mode_types': {'NewMode1': 'shared'},
                                                          'langchain_modes': ['NewMode1']}}}

    updates = {
        "selection_docs_state": {
            "langchain_modes": ["NewMode"],
            "langchain_mode_paths": {"NewMode": "new_mode_path"},
            "langchain_mode_types": {"NewMode": "shared"}
        }
    }
    from src.db_utils import append_to_users_data
    append_to_users_data(auth_filename, updates, verbose=True)

    auth_dict = fetch_user(auth_filename, username, verbose=True)
    assert auth_dict == {'jon': {'selection_docs_state':
                                     {'langchain_mode_paths': {'NewMode1': 'new_mode_path1',
                                                               "NewMode": "new_mode_path"},
                                      'langchain_mode_types': {'NewMode1': 'shared', "NewMode": "shared"},
                                      'langchain_modes': ['NewMode1', 'NewMode']}}}


def test_encode_chat_template():
    jinja_template = """
{{ bos_token }}
{%- if messages[0]['role'] == 'system' -%}
    {% set system_message = messages[0]['content'].strip() %}
    {% set loop_messages = messages[1:] %}
{%- else -%}
    {% set system_message = 'This is a chat between a user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user\'s questions based on the context. The assistant should also indicate when the answer cannot be found in the context.' %}
    {% set loop_messages = messages %}
{%- endif -%}

System: {{ system_message }}

{% for message in loop_messages %}
    {%- if message['role'] == 'user' -%}
        User: {{ message['content'].strip() + '\n' }}
    {%- else -%}
        Assistant: {{ message['content'].strip() + '\n' }}
    {%- endif %}
    {% if loop.last and message['role'] == 'user' %}
        Assistant:
    {% endif %}
{% endfor %}
"""

    encoded_template = base64_encode_jinja_template(jinja_template)
    print("\nEncoded Template:", encoded_template)

    model_lock_option = f"""--model_lock="[{{'inference_server': 'vllm_chat:149.130.210.116', 'base_model': 'nvidia/Llama3-ChatQA-1.5-70B', 'visible_models': 'nvidia/Llama3-ChatQA-1.5-70B', 'h2ogpt_key': '62224bfb-c832-4452-81e7-8a4bdabbe164', 'chat_template': '{encoded_template}'}}]"
"""

    print("Command-Line Option:")
    print(model_lock_option)

    # Example of decoding back from the command-line option
    command_line_option = model_lock_option.strip('--model_lock=')
    # double ast.literal_eval due to quoted quote for model_lock_option
    parsed_model_lock_option = ast.literal_eval(ast.literal_eval(command_line_option))

    encoded_template_from_option = parsed_model_lock_option[0]['chat_template']
    decoded_template = base64_decode_jinja_template(encoded_template_from_option)

    print("Decoded Template:")
    print(decoded_template)

    assert jinja_template == decoded_template


def test_depth():
    example_list = [[['Dog', ['/tmp/gradio/image_Dog_d2b19221_6f70_4987_bda8_09be952eae93.png']],
                     ['Who are you?', ['/tmp/gradio/image_Wh_480bd8318d01b570b61e77a9306aef87_c41f.png']],
                     ['Who ar eyou?',
                      "I apologize for the confusion earlier!\n\nI am LLaMA, an AI assistant developed by Meta AI that can understand and respond to human input in a conversational manner. I'm not a human, but a computer program designed to simulate conversation, answer questions, and even generate text based on the input I receive.\n\nI can assist with a wide range of topics, from general knowledge to entertainment, and even create stories or dialogues. I'm constantly learning and improving my responses based on the interactions I have with users like you.\n\nSo, feel free to ask me anything, and I'll do my best to help!"]],
                    [], [], [], [], [], [], [], [], [], [], []]
    assert get_gradio_depth(example_list) == 3

    example_list = [[[['Dog'], ['/tmp/gradio/image_Dog_d2b19221_6f70_4987_bda8_09be952eae93.png']],
                     ['Who are you?', ['/tmp/gradio/image_Wh_480bd8318d01b570b61e77a9306aef87_c41f.png']],
                     ['Who ar eyou?',
                      "I apologize for the confusion earlier!\n\nI am LLaMA, an AI assistant developed by Meta AI that can understand and respond to human input in a conversational manner. I'm not a human, but a computer program designed to simulate conversation, answer questions, and even generate text based on the input I receive.\n\nI can assist with a wide range of topics, from general knowledge to entertainment, and even create stories or dialogues. I'm constantly learning and improving my responses based on the interactions I have with users like you.\n\nSo, feel free to ask me anything, and I'll do my best to help!"]],
                    [], [], [], [], [], [], [], [], [], [], []]
    assert get_gradio_depth(example_list) == 3

    example_list = [[['Dog', "Bad Dog"], ['Who are you?', "Image"], ['Who ar eyou?',
                                                                     "I apologize for the confusion earlier!\n\nI am LLaMA, an AI assistant developed by Meta AI that can understand and respond to human input in a conversational manner. I'm not a human, but a computer program designed to simulate conversation, answer questions, and even generate text based on the input I receive.\n\nI can assist with a wide range of topics, from general knowledge to entertainment, and even create stories or dialogues. I'm constantly learning and improving my responses based on the interactions I have with users like you.\n\nSo, feel free to ask me anything, and I'll do my best to help!"]],
                    [], [], [], [], [], [], [], [], [], [], []]
    assert get_gradio_depth(example_list) == 3

    example_list = [[[['Dog', "Bad Dog"], ['Who are you?', "Image"], ['Who ar eyou?',
                                                                      "I apologize for the confusion earlier!\n\nI am LLaMA, an AI assistant developed by Meta AI that can understand and respond to human input in a conversational manner. I'm not a human, but a computer program designed to simulate conversation, answer questions, and even generate text based on the input I receive.\n\nI can assist with a wide range of topics, from general knowledge to entertainment, and even create stories or dialogues. I'm constantly learning and improving my responses based on the interactions I have with users like you.\n\nSo, feel free to ask me anything, and I'll do my best to help!"]],
                     [], [], [], [], [], [], [], [], [], [], []]]
    assert get_gradio_depth(example_list) == 4

    example_list = [['Dog', "Bad Dog"], ['Who are you?', "Image"]]
    assert get_gradio_depth(example_list) == 2

    # more cases
    example_list = []
    assert get_gradio_depth(example_list) == 0

    example_list = [1, 2, 3]
    assert get_gradio_depth(example_list) == 1

    example_list = [[1], [2], [3]]
    assert get_gradio_depth(example_list) == 1

    example_list = [[[1]], [[2]], [[3]]]
    assert get_gradio_depth(example_list) == 2

    example_list = [[[[1]]], [[[2]]], [[[3]]]]
    assert get_gradio_depth(example_list) == 3

    example_list = [[[[[1]]]], [[[[2]]]], [[[[3]]]]]
    assert get_gradio_depth(example_list) == 4

    example_list = [[], [1], [2, [3]], [[[4]]]]
    assert get_gradio_depth(example_list) == 3

    example_list = [[], [[[[1]]]], [2, [3]], [[[4]]]]
    assert get_gradio_depth(example_list) == 4

    example_list = [[], [[[[[1]]]]], [2, [3]], [[[4]]]]
    assert get_gradio_depth(example_list) == 5

    example_list = [[[[[1]]]], [[[[2]]]], [[[3]]], [[4]], [5]]
    assert get_gradio_depth(example_list) == 4

    example_list = [[[[[1]]]], [[[[2]]]], [[[3]]], [[4]], [5], []]
    assert get_gradio_depth(example_list) == 4


def test_schema_to_typed():
    TEST_SCHEMA = {
        "type": "object",
        "properties": {
            "name": {"type": "string"},
            "age": {"type": "integer"},
            "skills": {
                "type": "array",
                "items": {"type": "string", "maxLength": 10},
                "minItems": 3
            },
            "work history": {
                "type": "array",
                "items": {
                    "type": "object",
                    "properties": {
                        "company": {"type": "string"},
                        "duration": {"type": "string"},
                        "position": {"type": "string"}
                    },
                    "required": ["company", "position"]
                }
            }
        },
        "required": ["name", "age", "skills", "work history"]
    }

    Schema = create_typed_dict(TEST_SCHEMA)

    # Example usage of the generated TypedDict
    person: Schema = {
        "name": "John Doe",
        "age": 30,
        "skills": ["Python", "TypeScript", "Docker"],
        "work history": [
            {"company": "TechCorp", "position": "Developer", "duration": "2 years"},
            {"company": "DataInc", "position": "Data Scientist"}
        ]
    }

    print(person)


def test_genai_schema():
    # Usage example
    TEST_SCHEMA = {
        "type": "object",
        "properties": {
            "name": {"type": "string"},
            "age": {"type": "integer"},
            "skills": {
                "type": "array",
                "items": {"type": "string", "maxLength": 10},
                "minItems": 3
            },
            "work history": {
                "type": "array",
                "items": {
                    "type": "object",
                    "properties": {
                        "company": {"type": "string"},
                        "duration": {"type": "string"},
                        "position": {"type": "string"}
                    },
                    "required": ["company", "position"]
                }
            },
            "status": {
                "type": "string",
                "enum": ["active", "inactive", "on leave"]
            }
        },
        "required": ["name", "age", "skills", "work history", "status"]
    }

    from src.utils_langchain import convert_to_genai_schema
    genai_schema = convert_to_genai_schema(TEST_SCHEMA)

    # Print the schema (this will show the structure, but not all details)
    print(genai_schema)

    # You can now use this schema with the Gemini API
    # For example:
    # response = model.generate_content(prompt, response_schema=genai_schema)


def test_genai_schema_more():
    # Test cases
    TEST_SCHEMAS = [
        # Object schema
        {
            "type": "object",
            "properties": {
                "name": {"type": "string", "description": "The person's name"},
                "age": {"type": "integer", "description": "The person's age"},
                "height": {"type": "number", "format": "float", "description": "Height in meters"},
                "is_student": {"type": "boolean", "description": "Whether the person is a student"},
                "skills": {
                    "type": "array",
                    "items": {"type": "string"},
                    "description": "List of skills"
                },
                "address": {
                    "type": "object",
                    "properties": {
                        "street": {"type": "string"},
                        "city": {"type": "string"},
                        "country": {"type": "string"}
                    },
                    "required": ["street", "city"],
                    "description": "Address details"
                },
                "status": {
                    "type": "string",
                    "enum": ["active", "inactive", "on leave"],
                    "description": "Current status"
                }
            },
            "required": ["name", "age", "is_student"],
            "description": "A person's profile"
        },
        # Array schema
        {
            "type": "array",
            "items": {
                "type": "object",
                "properties": {
                    "id": {"type": "integer"},
                    "name": {"type": "string"}
                },
                "required": ["id"]
            },
            "description": "List of items"
        },
        # String schema
        {
            "type": "string",
            "format": "email",
            "description": "Email address"
        },
        # Number schema
        {
            "type": "number",
            "format": "double",
            "description": "A floating-point number"
        },
        # Boolean schema
        {
            "type": "boolean",
            "description": "A true/false value"
        }
    ]

    from src.utils_langchain import convert_to_genai_schema

    # Test the conversion
    for i, schema in enumerate(TEST_SCHEMAS, 1):
        print(f"\nTest Schema {i}:")
        genai_schema = convert_to_genai_schema(schema)
        print(genai_schema)


def test_pymupdf4llm():
    from langchain_community.document_loaders import PyMuPDFLoader
    from src.utils_langchain import PyMuPDF4LLMLoader

    times_pymupdf = []
    times_pymupdf4llm = []
    files = [os.path.join('tests', x) for x in os.listdir('tests')]
    files += [os.path.join('/home/jon/Downloads/', x) for x in os.listdir('/home/jon/Downloads/')]
    files = ['/home/jon/Downloads/Tabasco_Ingredients_Products_Guide.pdf']
    for file in files:
        if not file.endswith('.pdf'):
            continue

        t0 = time.time()
        doc = PyMuPDFLoader(file).load()
        assert doc is not None
        print('pymupdf: %s %s %s' % (file, len(doc), time.time() - t0))
        times_pymupdf.append((time.time() - t0)/len(doc))
        for page in doc:
            print(page)

        t0 = time.time()
        doc = PyMuPDF4LLMLoader(file).load()
        assert doc is not None
        print('pymupdf4llm: %s %s %s' % (file, len(doc), time.time() - t0))
        times_pymupdf4llm.append((time.time() - t0)/len(doc))
        for page in doc:
            print(page)

        if len(times_pymupdf) > 30:
            break

    print("pymupdf stats:")
    compute_stats(times_pymupdf)

    print("pymupdf4llm stats:")
    compute_stats(times_pymupdf4llm)


def compute_stats(times_in_seconds):

    # Compute statistics
    min_time = min(times_in_seconds)
    max_time = max(times_in_seconds)
    average_time = sum(times_in_seconds) / len(times_in_seconds)

    # Print the results
    print(f"Min time: {min_time} seconds")
    print(f"Max time: {max_time} seconds")
    print(f"Average time: {average_time} seconds")