File size: 14,279 Bytes
3943768 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 |
# https://raw.githubusercontent.com/THUDM/CogVLM2/main/basic_demo/openai_api_demo.py
import asyncio
# HOST=0.0.0.0 PORT=30030 CUDA_VISIBLE_DEVICES=7 python openai_server/cogvlm2_server/cogvlm2.py &> cogvlm2.log &
# disown %1
import gc
import os
import threading
import time
import base64
from contextlib import asynccontextmanager
from typing import List, Literal, Union, Tuple, Optional
import filelock
import torch
import uvicorn
from fastapi import FastAPI, HTTPException
from fastapi.responses import JSONResponse, Response, StreamingResponse
from fastapi.middleware.cors import CORSMiddleware
from loguru import logger
from pydantic import BaseModel, Field
from sse_starlette.sse import EventSourceResponse
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from PIL import Image
from io import BytesIO
MODEL_PATH = 'THUDM/cogvlm2-llama3-chat-19B'
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
TORCH_TYPE = torch.bfloat16 if torch.cuda.is_available() and torch.cuda.get_device_capability()[
0] >= 8 else torch.float16
@asynccontextmanager
async def lifespan(app: FastAPI):
"""
An asynchronous context manager for managing the lifecycle of the FastAPI app.
It ensures that GPU memory is cleared after the app's lifecycle ends, which is essential for efficient resource management in GPU environments.
"""
yield
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
app = FastAPI(lifespan=lifespan)
lock = asyncio.Lock()
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
class ModelCard(BaseModel):
"""
A Pydantic model representing a model card, which provides metadata about a machine learning model.
It includes fields like model ID, owner, and creation time.
"""
id: str
object: str = "model"
created: int = Field(default_factory=lambda: int(time.time()))
owned_by: str = "owner"
root: Optional[str] = None
parent: Optional[str] = None
permission: Optional[list] = None
class ModelList(BaseModel):
object: str = "list"
data: List[ModelCard] = []
class ImageUrl(BaseModel):
url: str
class TextContent(BaseModel):
type: Literal["text"]
text: str
class ImageUrlContent(BaseModel):
type: Literal["image_url"]
image_url: ImageUrl
ContentItem = Union[TextContent, ImageUrlContent]
class ChatMessageInput(BaseModel):
role: Literal["user", "assistant", "system"]
content: Union[str, List[ContentItem]]
name: Optional[str] = None
class ChatMessageResponse(BaseModel):
role: Literal["assistant"]
content: str = None
name: Optional[str] = None
class DeltaMessage(BaseModel):
role: Optional[Literal["user", "assistant", "system"]] = None
content: Optional[str] = None
class ChatCompletionRequest(BaseModel):
model: str
messages: List[ChatMessageInput]
temperature: Optional[float] = 0.8
top_p: Optional[float] = 0.8
max_tokens: Optional[int] = None
stream: Optional[bool] = False
# Additional parameters
repetition_penalty: Optional[float] = 1.0
class ChatCompletionResponseChoice(BaseModel):
index: int
message: ChatMessageResponse
class ChatCompletionResponseStreamChoice(BaseModel):
index: int
delta: DeltaMessage
class UsageInfo(BaseModel):
prompt_tokens: int = 0
total_tokens: int = 0
completion_tokens: Optional[int] = 0
class ChatCompletionResponse(BaseModel):
model: str
object: Literal["chat.completion", "chat.completion.chunk"]
choices: List[Union[ChatCompletionResponseChoice, ChatCompletionResponseStreamChoice]]
created: Optional[int] = Field(default_factory=lambda: int(time.time()))
usage: Optional[UsageInfo] = None
@app.get("/health")
async def health() -> Response:
"""Health check."""
return Response(status_code=200)
@app.get("/v1/models", response_model=ModelList)
async def list_models():
"""
An endpoint to list available models. It returns a list of model cards.
This is useful for clients to query and understand what models are available for use.
"""
model_card = ModelCard(id="cogvlm2-19b")
return ModelList(data=[model_card])
@app.post("/v1/chat/completions", response_model=ChatCompletionResponse)
async def create_chat_completion(request: ChatCompletionRequest):
async with lock:
global model, tokenizer
if len(request.messages) < 1 or request.messages[-1].role == "assistant":
raise HTTPException(status_code=400, detail="Invalid request")
gen_params = dict(
messages=request.messages,
temperature=request.temperature,
top_p=request.top_p,
max_tokens=request.max_tokens or 1024,
echo=False,
stream=request.stream,
repetition_penalty=request.repetition_penalty
)
print(gen_params)
lock_file = f"{MODEL_PATH}.lock"
os.makedirs(os.path.dirname(lock_file), exist_ok=True)
with filelock.FileLock(lock_file):
if request.stream:
generate = predict(request.model, gen_params)
return EventSourceResponse(generate, media_type="text/event-stream")
response = generate_cogvlm(model, tokenizer, gen_params)
usage = UsageInfo()
message = ChatMessageResponse(
role="assistant",
content=response["text"],
)
logger.debug(f"==== message ====\n{message}")
choice_data = ChatCompletionResponseChoice(
index=0,
message=message,
)
task_usage = UsageInfo.model_validate(response["usage"])
for usage_key, usage_value in task_usage.model_dump().items():
setattr(usage, usage_key, getattr(usage, usage_key) + usage_value)
return ChatCompletionResponse(model=request.model, choices=[choice_data], object="chat.completion", usage=usage)
def predict(model_id: str, params: dict):
global model, tokenizer
choice_data = ChatCompletionResponseStreamChoice(
index=0,
delta=DeltaMessage(role="assistant"),
finish_reason=None
)
chunk = ChatCompletionResponse(model=model_id, choices=[choice_data], object="chat.completion.chunk")
yield "{}".format(chunk.model_dump_json(exclude_unset=True))
previous_text = ""
for new_response in generate_stream_cogvlm(model, tokenizer, params):
decoded_unicode = new_response["text"]
delta_text = decoded_unicode[len(previous_text):]
previous_text = decoded_unicode
delta = DeltaMessage(content=delta_text, role="assistant")
choice_data = ChatCompletionResponseStreamChoice(index=0, delta=delta)
chunk = ChatCompletionResponse(model=model_id, choices=[choice_data], object="chat.completion.chunk")
yield "{}".format(chunk.model_dump_json(exclude_unset=True))
choice_data = ChatCompletionResponseStreamChoice(index=0, delta=DeltaMessage())
chunk = ChatCompletionResponse(model=model_id, choices=[choice_data], object="chat.completion.chunk")
yield "{}".format(chunk.model_dump_json(exclude_unset=True))
def generate_cogvlm(model: AutoModelForCausalLM, tokenizer: AutoTokenizer, params: dict):
"""
Generates a response using the CogVLM2 model. It processes the chat history and image data, if any,
and then invokes the model to generate a response.
"""
response = None
for response in generate_stream_cogvlm(model, tokenizer, params):
pass
return response
def process_history_and_images(messages: List[ChatMessageInput]) -> Tuple[
Optional[str], Optional[List[Tuple[str, str]]], Optional[List[Image.Image]]]:
"""
Process history messages to extract text, identify the last user query,
and convert base64 encoded image URLs to PIL images.
Args:
messages(List[ChatMessageInput]): List of ChatMessageInput objects.
return: A tuple of three elements:
- The last user query as a string.
- Text history formatted as a list of tuples for the model.
- List of PIL Image objects extracted from the messages.
"""
formatted_history = []
image_list = []
last_user_query = ''
system_prompt = ''
for i, message in enumerate(messages):
role = message.role
content = message.content
if isinstance(content, list): # text
text_content = ' '.join(item.text for item in content if isinstance(item, TextContent))
else:
text_content = content
if isinstance(content, list): # image
for item in content:
if isinstance(item, ImageUrlContent):
image_url = item.image_url.url
image_url_prefix = image_url[:30]
if image_url_prefix.startswith("data:image/") and ';base64,' in image_url_prefix:
base64_encoded_image = image_url.split(";base64,")[1]
image_data = base64.b64decode(base64_encoded_image)
image = Image.open(BytesIO(image_data)).convert('RGB')
image_list.append(image)
if role == 'user':
if i == len(messages) - 1: # 最后一条用户消息
last_user_query = text_content
else:
formatted_history.append((text_content, ''))
elif role == 'assistant':
if formatted_history:
if formatted_history[-1][1] != '':
assert False, f"the last query is answered. answer again. {formatted_history[-1][0]}, {formatted_history[-1][1]}, {text_content}"
formatted_history[-1] = (formatted_history[-1][0], text_content)
else:
assert False, f"assistant reply before user"
elif role == 'system':
system_prompt = text_content
else:
assert False, f"unrecognized role: {role}"
if system_prompt:
last_user_query = f'SYS: {system_prompt}\n\n{last_user_query}'
return last_user_query, formatted_history, image_list
@torch.inference_mode()
def generate_stream_cogvlm(model: AutoModelForCausalLM, tokenizer: AutoTokenizer, params: dict):
messages = params["messages"]
temperature = float(params.get("temperature", 1.0))
repetition_penalty = float(params.get("repetition_penalty", 1.0))
top_p = float(params.get("top_p", 1.0))
max_new_tokens = int(params.get("max_tokens", 256))
query, history, image_list = process_history_and_images(messages)
image_kwargs = {}
if image_list:
image_kwargs.update(dict(images=[image_list[-1]]))
input_by_model = model.build_conversation_input_ids(tokenizer, query=query, history=history, **image_kwargs)
inputs = {
'input_ids': input_by_model['input_ids'].unsqueeze(0).to(DEVICE),
'token_type_ids': input_by_model['token_type_ids'].unsqueeze(0).to(DEVICE),
'attention_mask': input_by_model['attention_mask'].unsqueeze(0).to(DEVICE),
}
if image_list:
inputs.update(dict(images=[[input_by_model['images'][0].to(DEVICE).to(TORCH_TYPE)]]))
if 'cross_images' in input_by_model and input_by_model['cross_images']:
inputs['cross_images'] = [[input_by_model['cross_images'][0].to(DEVICE).to(TORCH_TYPE)]]
input_echo_len = len(inputs["input_ids"][0])
streamer = TextIteratorStreamer(
tokenizer=tokenizer,
timeout=60.0,
skip_prompt=True,
skip_special_tokens=True
)
gen_kwargs = {
"repetition_penalty": repetition_penalty,
"max_new_tokens": max_new_tokens,
"do_sample": temperature > 1e-5,
'streamer': streamer,
}
if temperature > 1e-5:
gen_kwargs["temperature"] = temperature
gen_kwargs["top_p"] = top_p
print(gen_kwargs)
generated_text = ""
def generate_text():
with torch.no_grad():
model.generate(**inputs, **gen_kwargs)
generation_thread = threading.Thread(target=generate_text)
generation_thread.start()
total_len = input_echo_len
for next_text in streamer:
generated_text += next_text
total_len = len(tokenizer.encode(generated_text))
yield {
"text": generated_text,
"usage": {
"prompt_tokens": input_echo_len,
"completion_tokens": total_len - input_echo_len,
"total_tokens": total_len,
},
}
generation_thread.join()
yield {
"text": generated_text,
"usage": {
"prompt_tokens": input_echo_len,
"completion_tokens": total_len - input_echo_len,
"total_tokens": total_len,
},
}
gc.collect()
torch.cuda.empty_cache()
if __name__ == "__main__":
# Argument parser
import argparse
parser = argparse.ArgumentParser(description="CogVLM2 Web Demo")
parser.add_argument('--quant', type=int, choices=[4, 8], help='Enable 4-bit or 8-bit precision loading', default=0)
args = parser.parse_args()
if 'int4' in MODEL_PATH:
args.quant = 4
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, trust_remote_code=True)
# Load the model
if args.quant == 4:
model = AutoModelForCausalLM.from_pretrained(
MODEL_PATH,
torch_dtype=TORCH_TYPE,
trust_remote_code=True,
load_in_4bit=True,
low_cpu_mem_usage=True
).eval()
elif args.quant == 8:
model = AutoModelForCausalLM.from_pretrained(
MODEL_PATH,
torch_dtype=TORCH_TYPE,
trust_remote_code=True,
load_in_8bit=True, # Assuming transformers support this argument; check documentation if not
low_cpu_mem_usage=True
).eval()
else:
model = AutoModelForCausalLM.from_pretrained(
MODEL_PATH,
torch_dtype=TORCH_TYPE,
trust_remote_code=True
).eval().to(DEVICE)
uvicorn.run(app, host=os.environ.get('HOST', '0.0.0.0'), port=int(os.environ.get('PORT', '8000')), workers=1)
|