import os import gradio as gr import spaces import dolphin from dolphin.languages import LANGUAGE_CODES, LANGUAGE_REGION_CODES MODEL_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), "models") os.makedirs(MODEL_DIR, exist_ok=True) language_options = [(f"{code}: {name[0]}", code) for code, name in LANGUAGE_CODES.items()] language_options.sort(key=lambda x: x[0]) MODELS = { "base (140M)": "base", "small (372M)": "small", } language_to_regions = {} for lang_region, names in LANGUAGE_REGION_CODES.items(): if "-" in lang_region: lang, region = lang_region.split("-", 1) if lang not in language_to_regions: language_to_regions[lang] = [] language_to_regions[lang].append((f"{region}: {names[0]}", region)) def update_regions(language): if language and language in language_to_regions: regions = language_to_regions[language] regions.sort(key=lambda x: x[0]) return gr.Dropdown.update(choices=regions, value=regions[0][1], visible=True) return gr.Dropdown.update(choices=[], value=None, visible=False) @spaces.GPU def transcribe_audio(audio_file, model_name, language, region, predict_timestamps, padding_speech): model_key = MODELS[model_name] model = dolphin.load_model(model_key, MODEL_DIR, "cuda") waveform = dolphin.load_audio(audio_file) kwargs = { "predict_time": predict_timestamps, "padding_speech": padding_speech } if language: kwargs["lang_sym"] = language if region: kwargs["region_sym"] = region result = model(waveform, **kwargs) output_text = result.text language_detected = f"{result.language}" region_detected = f"{result.region}" detected_info = f"Detected language: {result.language}" + \ (f", region: {result.region}" if result.region else "") return output_text, detected_info with gr.Blocks(title="Dolphin Speech Recognition") as demo: gr.Markdown("# Dolphin ASR") gr.Markdown(""" A multilingual, multitask ASR model supporting 40 Eastern languages and 22 Chinese dialects. This model is from [DataoceanAI/Dolphin](https://github.com/DataoceanAI/Dolphin), for speech recognition in Eastern languages including Chinese, Japanese, Korean, and many more. """) with gr.Row(): with gr.Column(): audio_input = gr.Audio( type="filepath", label="Upload or Record Audio") with gr.Row(): model_dropdown = gr.Dropdown( choices=list(MODELS.keys()), value=list(MODELS.keys())[1], label="Model Size" ) with gr.Row(): language_dropdown = gr.Dropdown( choices=language_options, value=None, label="Language (Optional)", info="If not selected, the model will auto-detect language" ) region_dropdown = gr.Dropdown( choices=[], value=None, label="Region (Optional)", visible=False ) with gr.Row(): timestamp_checkbox = gr.Checkbox( value=True, label="Include Timestamps" ) padding_checkbox = gr.Checkbox( value=True, label="Pad Speech to 30s" ) transcribe_button = gr.Button("Transcribe", variant="primary") with gr.Column(): output_text = gr.Textbox(label="Transcription", lines=10) language_info = gr.Textbox(label="Detected Language", lines=1) language_dropdown.change( fn=update_regions, inputs=[language_dropdown], outputs=[region_dropdown] ) transcribe_button.click( fn=transcribe_audio, inputs=[ audio_input, model_dropdown, language_dropdown, region_dropdown, timestamp_checkbox, padding_checkbox ], outputs=[output_text, language_info] ) gr.Examples( inputs=[ audio_input, model_dropdown, language_dropdown, region_dropdown, timestamp_checkbox, padding_checkbox ], outputs=[output_text, language_info], fn=transcribe_audio, cache_examples=True, ) gr.Markdown(""" - The model supports 40 Eastern languages and 22 Chinese dialects - You can let the model auto-detect language or specify language and region - Timestamps can be included in the output - Speech can be padded to 30 seconds for better processing - Model: [DataoceanAI/Dolphin](https://github.com/DataoceanAI/Dolphin) - Paper: [Dolphin: A Multilingual Model for Eastern Languages](https://arxiv.org/abs/2503.20212) """) demo.launch()