File size: 5,068 Bytes
8d36f34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import os
import gradio as gr
import spaces
import dolphin
from dolphin.languages import LANGUAGE_CODES, LANGUAGE_REGION_CODES

MODEL_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), "models")
os.makedirs(MODEL_DIR, exist_ok=True)

language_options = [(f"{code}: {name[0]}", code)
                    for code, name in LANGUAGE_CODES.items()]
language_options.sort(key=lambda x: x[0])

MODELS = {
    "base (140M)": "base",
    "small (372M)": "small",
}

language_to_regions = {}
for lang_region, names in LANGUAGE_REGION_CODES.items():
    if "-" in lang_region:
        lang, region = lang_region.split("-", 1)
        if lang not in language_to_regions:
            language_to_regions[lang] = []
        language_to_regions[lang].append((f"{region}: {names[0]}", region))



def update_regions(language):
    if language and language in language_to_regions:
        regions = language_to_regions[language]
        regions.sort(key=lambda x: x[0])
        return gr.Dropdown.update(choices=regions, value=regions[0][1], visible=True)
    return gr.Dropdown.update(choices=[], value=None, visible=False)



@spaces.GPU
def transcribe_audio(audio_file, model_name, language, region, predict_timestamps, padding_speech):
    model_key = MODELS[model_name]
    model = dolphin.load_model(model_key, MODEL_DIR, "cuda")

    waveform = dolphin.load_audio(audio_file)

    kwargs = {
        "predict_time": predict_timestamps,
        "padding_speech": padding_speech
    }

    if language:
        kwargs["lang_sym"] = language
        if region:
            kwargs["region_sym"] = region

    result = model(waveform, **kwargs)

    output_text = result.text
    language_detected = f"{result.language}"
    region_detected = f"{result.region}"

    detected_info = f"Detected language: {result.language}" + \
        (f", region: {result.region}" if result.region else "")
    return output_text, detected_info


with gr.Blocks(title="Dolphin Speech Recognition") as demo:
    gr.Markdown("# Dolphin ASR")
    gr.Markdown("""
    A multilingual, multitask ASR model supporting 40 Eastern languages and 22 Chinese dialects.
    
    This model is from [DataoceanAI/Dolphin](https://github.com/DataoceanAI/Dolphin), for speech recognition in 
    Eastern languages including Chinese, Japanese, Korean, and many more.
    """)

    with gr.Row():
        with gr.Column():
            audio_input = gr.Audio(
                type="filepath", label="Upload or Record Audio")

            with gr.Row():
                model_dropdown = gr.Dropdown(
                    choices=list(MODELS.keys()),
                    value=list(MODELS.keys())[1],
                    label="Model Size"
                )

            with gr.Row():
                language_dropdown = gr.Dropdown(
                    choices=language_options,
                    value=None,
                    label="Language (Optional)",
                    info="If not selected, the model will auto-detect language"
                )
                region_dropdown = gr.Dropdown(
                    choices=[],
                    value=None,
                    label="Region (Optional)",
                    visible=False
                )

            with gr.Row():
                timestamp_checkbox = gr.Checkbox(
                    value=True,
                    label="Include Timestamps"
                )
                padding_checkbox = gr.Checkbox(
                    value=True,
                    label="Pad Speech to 30s"
                )

            transcribe_button = gr.Button("Transcribe", variant="primary")

        with gr.Column():
            output_text = gr.Textbox(label="Transcription", lines=10)
            language_info = gr.Textbox(label="Detected Language", lines=1)

    language_dropdown.change(
        fn=update_regions,
        inputs=[language_dropdown],
        outputs=[region_dropdown]
    )

    transcribe_button.click(
        fn=transcribe_audio,
        inputs=[
            audio_input,
            model_dropdown,
            language_dropdown,
            region_dropdown,
            timestamp_checkbox,
            padding_checkbox
        ],
        outputs=[output_text, language_info]
    )

    gr.Examples(
        inputs=[
            audio_input,
            model_dropdown,
            language_dropdown,
            region_dropdown,
            timestamp_checkbox,
            padding_checkbox
        ],
        outputs=[output_text, language_info],
        fn=transcribe_audio,
        cache_examples=True,
    )

    gr.Markdown("""
    
    - The model supports 40 Eastern languages and 22 Chinese dialects
    - You can let the model auto-detect language or specify language and region
    - Timestamps can be included in the output
    - Speech can be padded to 30 seconds for better processing
    
    
    - Model: [DataoceanAI/Dolphin](https://github.com/DataoceanAI/Dolphin)
    - Paper: [Dolphin: A Multilingual Model for Eastern Languages](https://arxiv.org/abs/2503.20212)
    """)

demo.launch()