from datasets import load_dataset from transformers import AutoTokenizer, AutoModel import faiss import torch import numpy as np # ✅ Load datasets datasets = { "sales": load_dataset("goendalf666/sales-conversations"), "blended": load_dataset("blended_skill_talk"), "dialog": load_dataset("daily_dialog"), "multiwoz": load_dataset("multi_woz_v22"), } # ✅ Load MiniLM model and tokenizer model_name = "sentence-transformers/all-MiniLM-L6-v2" # Model for embeddings tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModel.from_pretrained(model_name) def embed_text(texts): inputs = tokenizer(texts, padding=True, truncation=True, return_tensors="pt", max_length=512) with torch.no_grad(): embeddings = model(**inputs).last_hidden_state.mean(dim=1).cpu().numpy() return embeddings # ✅ Extract and embed the datasets def create_embeddings(dataset_name, dataset): print(f"Creating embeddings for {dataset_name}...") texts = [text for text in dataset["train"]['text']] # Adjust the field depending on dataset structure embeddings = embed_text(texts) return embeddings # ✅ Save embeddings to a database def save_embeddings_to_faiss(embeddings, index_name="my_embeddings"): print("Saving embeddings to FAISS...") index = faiss.IndexFlatL2(embeddings.shape[1]) # Assuming 512-dimensional embeddings index.add(np.array(embeddings).astype(np.float32)) faiss.write_index(index, index_name) # Save FAISS index to file return index # ✅ Create embeddings for all datasets for name, dataset in datasets.items(): embeddings = create_embeddings(name, dataset) index = save_embeddings_to_faiss(embeddings) print(f"Embeddings for {name} saved to FAISS.")