updating app.py to auto run scripts
Browse files
app.py
CHANGED
|
@@ -1,42 +1,58 @@
|
|
| 1 |
-
import os
|
| 2 |
import gradio as gr
|
| 3 |
from huggingface_hub import InferenceClient
|
| 4 |
from datasets import load_dataset
|
| 5 |
-
import time
|
| 6 |
import faiss
|
| 7 |
import numpy as np
|
|
|
|
|
|
|
| 8 |
|
| 9 |
-
# β
|
| 10 |
os.system("pip install faiss-cpu")
|
| 11 |
|
| 12 |
def log(message):
|
| 13 |
print(f"β
{message}")
|
| 14 |
|
| 15 |
-
|
| 16 |
# β
Load the datasets
|
|
|
|
| 17 |
datasets = {
|
| 18 |
"sales": load_dataset("goendalf666/sales-conversations", trust_remote_code=True),
|
| 19 |
"blended": load_dataset("blended_skill_talk", trust_remote_code=True),
|
| 20 |
"dialog": load_dataset("daily_dialog", trust_remote_code=True),
|
| 21 |
"multiwoz": load_dataset("multi_woz_v22", trust_remote_code=True),
|
| 22 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
-
#
|
| 25 |
-
for name, dataset in datasets.items():
|
| 26 |
-
print(f"{name}: {len(dataset['train'])} examples")
|
| 27 |
|
| 28 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
client = InferenceClient("mistralai/Mistral-7B-Instruct-v0.3")
|
| 30 |
|
| 31 |
-
|
| 32 |
-
def respond(
|
| 33 |
-
message,
|
| 34 |
-
history: list[tuple[str, str]],
|
| 35 |
-
system_message,
|
| 36 |
-
max_tokens,
|
| 37 |
-
temperature,
|
| 38 |
-
top_p,
|
| 39 |
-
):
|
| 40 |
messages = [{"role": "system", "content": system_message}]
|
| 41 |
|
| 42 |
for val in history:
|
|
@@ -46,81 +62,27 @@ def respond(
|
|
| 46 |
messages.append({"role": "assistant", "content": val[1]})
|
| 47 |
|
| 48 |
messages.append({"role": "user", "content": message})
|
| 49 |
-
|
| 50 |
response = ""
|
| 51 |
|
| 52 |
for message in client.chat_completions(
|
| 53 |
-
messages,
|
| 54 |
-
max_tokens=max_tokens,
|
| 55 |
-
stream=True,
|
| 56 |
-
temperature=temperature,
|
| 57 |
-
top_p=top_p,
|
| 58 |
):
|
| 59 |
token = message["choices"][0]["delta"]["content"]
|
| 60 |
response += token
|
| 61 |
yield response
|
| 62 |
|
| 63 |
-
|
| 64 |
-
# Gradio interface for chatbot
|
| 65 |
demo = gr.ChatInterface(
|
| 66 |
respond,
|
| 67 |
additional_inputs=[
|
| 68 |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
| 69 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
| 70 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
| 71 |
-
gr.Slider(
|
| 72 |
-
minimum=0.1,
|
| 73 |
-
maximum=1.0,
|
| 74 |
-
value=0.95,
|
| 75 |
-
step=0.05,
|
| 76 |
-
label="Top-p (nucleus sampling)",
|
| 77 |
-
),
|
| 78 |
],
|
| 79 |
)
|
| 80 |
|
| 81 |
-
|
| 82 |
-
# Include your embedding logic here (from embeddings.py)
|
| 83 |
-
log("Embedding started...")
|
| 84 |
-
time.sleep(2) # Simulating embedding process
|
| 85 |
-
log("Embedding process finished.")
|
| 86 |
-
|
| 87 |
-
# Create Gradio interface with a button to start the embedding
|
| 88 |
-
demo = gr.Interface(
|
| 89 |
-
fn=start_embedding,
|
| 90 |
-
inputs=None,
|
| 91 |
-
outputs="text",
|
| 92 |
-
live=True,
|
| 93 |
-
title="Embedding Trigger"
|
| 94 |
-
)
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
# β
Function to check FAISS index
|
| 98 |
-
def check_faiss():
|
| 99 |
-
index_path = "my_embeddings" # Adjust if needed
|
| 100 |
-
|
| 101 |
-
try:
|
| 102 |
-
index = faiss.read_index(index_path)
|
| 103 |
-
num_vectors = index.ntotal
|
| 104 |
-
dim = index.d
|
| 105 |
-
|
| 106 |
-
if num_vectors > 0:
|
| 107 |
-
sample_vectors = index.reconstruct_n(0, min(5, num_vectors)) # Get first 5 embeddings
|
| 108 |
-
return f"π FAISS index contains {num_vectors} vectors.\nβ
Embedding dimension: {dim}\nπ§ Sample: {sample_vectors[:2]} ..."
|
| 109 |
-
else:
|
| 110 |
-
return "β οΈ No embeddings found in FAISS index!"
|
| 111 |
-
|
| 112 |
-
except Exception as e:
|
| 113 |
-
return f"β ERROR: Failed to load FAISS index - {e}"
|
| 114 |
-
|
| 115 |
-
# β
Add a Gradio button to trigger FAISS check
|
| 116 |
-
with gr.Blocks() as demo:
|
| 117 |
-
gr.Markdown("### π FAISS Embedding Check")
|
| 118 |
-
|
| 119 |
-
check_button = gr.Button("π Check FAISS Embeddings")
|
| 120 |
-
output_text = gr.Textbox(label="FAISS Status", interactive=False)
|
| 121 |
-
|
| 122 |
-
check_button.click(fn=check_faiss, outputs=output_text)
|
| 123 |
-
|
| 124 |
-
# Launch Gradio app
|
| 125 |
if __name__ == "__main__":
|
| 126 |
demo.launch()
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from huggingface_hub import InferenceClient
|
| 3 |
from datasets import load_dataset
|
|
|
|
| 4 |
import faiss
|
| 5 |
import numpy as np
|
| 6 |
+
import os
|
| 7 |
+
import time
|
| 8 |
|
| 9 |
+
# β
Ensure FAISS is installed
|
| 10 |
os.system("pip install faiss-cpu")
|
| 11 |
|
| 12 |
def log(message):
|
| 13 |
print(f"β
{message}")
|
| 14 |
|
|
|
|
| 15 |
# β
Load the datasets
|
| 16 |
+
log("π₯ Loading datasets...")
|
| 17 |
datasets = {
|
| 18 |
"sales": load_dataset("goendalf666/sales-conversations", trust_remote_code=True),
|
| 19 |
"blended": load_dataset("blended_skill_talk", trust_remote_code=True),
|
| 20 |
"dialog": load_dataset("daily_dialog", trust_remote_code=True),
|
| 21 |
"multiwoz": load_dataset("multi_woz_v22", trust_remote_code=True),
|
| 22 |
}
|
| 23 |
+
log("β
Datasets loaded.")
|
| 24 |
+
|
| 25 |
+
# β
Step 1: Run Embedding Script (Import and Run)
|
| 26 |
+
log("π Running embeddings script...")
|
| 27 |
+
import embeddings # This will automatically run embeddings.py
|
| 28 |
|
| 29 |
+
time.sleep(5) # Wait for embeddings to be created
|
|
|
|
|
|
|
| 30 |
|
| 31 |
+
# β
Step 2: Check FAISS index
|
| 32 |
+
def check_faiss():
|
| 33 |
+
index_path = "my_embeddings" # Adjust if needed
|
| 34 |
+
|
| 35 |
+
try:
|
| 36 |
+
index = faiss.read_index(index_path)
|
| 37 |
+
num_vectors = index.ntotal
|
| 38 |
+
dim = index.d
|
| 39 |
+
|
| 40 |
+
if num_vectors > 0:
|
| 41 |
+
return f"π FAISS index contains {num_vectors} vectors.\nβ
Embedding dimension: {dim}"
|
| 42 |
+
else:
|
| 43 |
+
return "β οΈ No embeddings found in FAISS index!"
|
| 44 |
+
|
| 45 |
+
except Exception as e:
|
| 46 |
+
return f"β ERROR: Failed to load FAISS index - {e}"
|
| 47 |
+
|
| 48 |
+
log("π Checking FAISS embeddings...")
|
| 49 |
+
faiss_status = check_faiss()
|
| 50 |
+
log(faiss_status)
|
| 51 |
+
|
| 52 |
+
# β
Step 3: Initialize chatbot
|
| 53 |
client = InferenceClient("mistralai/Mistral-7B-Instruct-v0.3")
|
| 54 |
|
| 55 |
+
def respond(message, history, system_message, max_tokens, temperature, top_p):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
messages = [{"role": "system", "content": system_message}]
|
| 57 |
|
| 58 |
for val in history:
|
|
|
|
| 62 |
messages.append({"role": "assistant", "content": val[1]})
|
| 63 |
|
| 64 |
messages.append({"role": "user", "content": message})
|
|
|
|
| 65 |
response = ""
|
| 66 |
|
| 67 |
for message in client.chat_completions(
|
| 68 |
+
messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
):
|
| 70 |
token = message["choices"][0]["delta"]["content"]
|
| 71 |
response += token
|
| 72 |
yield response
|
| 73 |
|
| 74 |
+
# β
Step 4: Start Chatbot Interface
|
|
|
|
| 75 |
demo = gr.ChatInterface(
|
| 76 |
respond,
|
| 77 |
additional_inputs=[
|
| 78 |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
| 79 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
| 80 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
| 81 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
],
|
| 83 |
)
|
| 84 |
|
| 85 |
+
log("β
All systems go! Launching chatbot...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
if __name__ == "__main__":
|
| 87 |
demo.launch()
|
| 88 |
+
|