updating app.py to auto run scripts
Browse files
app.py
CHANGED
@@ -1,42 +1,58 @@
|
|
1 |
-
import os
|
2 |
import gradio as gr
|
3 |
from huggingface_hub import InferenceClient
|
4 |
from datasets import load_dataset
|
5 |
-
import time
|
6 |
import faiss
|
7 |
import numpy as np
|
|
|
|
|
8 |
|
9 |
-
# β
|
10 |
os.system("pip install faiss-cpu")
|
11 |
|
12 |
def log(message):
|
13 |
print(f"β
{message}")
|
14 |
|
15 |
-
|
16 |
# β
Load the datasets
|
|
|
17 |
datasets = {
|
18 |
"sales": load_dataset("goendalf666/sales-conversations", trust_remote_code=True),
|
19 |
"blended": load_dataset("blended_skill_talk", trust_remote_code=True),
|
20 |
"dialog": load_dataset("daily_dialog", trust_remote_code=True),
|
21 |
"multiwoz": load_dataset("multi_woz_v22", trust_remote_code=True),
|
22 |
}
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
-
#
|
25 |
-
for name, dataset in datasets.items():
|
26 |
-
print(f"{name}: {len(dataset['train'])} examples")
|
27 |
|
28 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
client = InferenceClient("mistralai/Mistral-7B-Instruct-v0.3")
|
30 |
|
31 |
-
|
32 |
-
def respond(
|
33 |
-
message,
|
34 |
-
history: list[tuple[str, str]],
|
35 |
-
system_message,
|
36 |
-
max_tokens,
|
37 |
-
temperature,
|
38 |
-
top_p,
|
39 |
-
):
|
40 |
messages = [{"role": "system", "content": system_message}]
|
41 |
|
42 |
for val in history:
|
@@ -46,81 +62,27 @@ def respond(
|
|
46 |
messages.append({"role": "assistant", "content": val[1]})
|
47 |
|
48 |
messages.append({"role": "user", "content": message})
|
49 |
-
|
50 |
response = ""
|
51 |
|
52 |
for message in client.chat_completions(
|
53 |
-
messages,
|
54 |
-
max_tokens=max_tokens,
|
55 |
-
stream=True,
|
56 |
-
temperature=temperature,
|
57 |
-
top_p=top_p,
|
58 |
):
|
59 |
token = message["choices"][0]["delta"]["content"]
|
60 |
response += token
|
61 |
yield response
|
62 |
|
63 |
-
|
64 |
-
# Gradio interface for chatbot
|
65 |
demo = gr.ChatInterface(
|
66 |
respond,
|
67 |
additional_inputs=[
|
68 |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
69 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
70 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
71 |
-
gr.Slider(
|
72 |
-
minimum=0.1,
|
73 |
-
maximum=1.0,
|
74 |
-
value=0.95,
|
75 |
-
step=0.05,
|
76 |
-
label="Top-p (nucleus sampling)",
|
77 |
-
),
|
78 |
],
|
79 |
)
|
80 |
|
81 |
-
|
82 |
-
# Include your embedding logic here (from embeddings.py)
|
83 |
-
log("Embedding started...")
|
84 |
-
time.sleep(2) # Simulating embedding process
|
85 |
-
log("Embedding process finished.")
|
86 |
-
|
87 |
-
# Create Gradio interface with a button to start the embedding
|
88 |
-
demo = gr.Interface(
|
89 |
-
fn=start_embedding,
|
90 |
-
inputs=None,
|
91 |
-
outputs="text",
|
92 |
-
live=True,
|
93 |
-
title="Embedding Trigger"
|
94 |
-
)
|
95 |
-
|
96 |
-
|
97 |
-
# β
Function to check FAISS index
|
98 |
-
def check_faiss():
|
99 |
-
index_path = "my_embeddings" # Adjust if needed
|
100 |
-
|
101 |
-
try:
|
102 |
-
index = faiss.read_index(index_path)
|
103 |
-
num_vectors = index.ntotal
|
104 |
-
dim = index.d
|
105 |
-
|
106 |
-
if num_vectors > 0:
|
107 |
-
sample_vectors = index.reconstruct_n(0, min(5, num_vectors)) # Get first 5 embeddings
|
108 |
-
return f"π FAISS index contains {num_vectors} vectors.\nβ
Embedding dimension: {dim}\nπ§ Sample: {sample_vectors[:2]} ..."
|
109 |
-
else:
|
110 |
-
return "β οΈ No embeddings found in FAISS index!"
|
111 |
-
|
112 |
-
except Exception as e:
|
113 |
-
return f"β ERROR: Failed to load FAISS index - {e}"
|
114 |
-
|
115 |
-
# β
Add a Gradio button to trigger FAISS check
|
116 |
-
with gr.Blocks() as demo:
|
117 |
-
gr.Markdown("### π FAISS Embedding Check")
|
118 |
-
|
119 |
-
check_button = gr.Button("π Check FAISS Embeddings")
|
120 |
-
output_text = gr.Textbox(label="FAISS Status", interactive=False)
|
121 |
-
|
122 |
-
check_button.click(fn=check_faiss, outputs=output_text)
|
123 |
-
|
124 |
-
# Launch Gradio app
|
125 |
if __name__ == "__main__":
|
126 |
demo.launch()
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
from datasets import load_dataset
|
|
|
4 |
import faiss
|
5 |
import numpy as np
|
6 |
+
import os
|
7 |
+
import time
|
8 |
|
9 |
+
# β
Ensure FAISS is installed
|
10 |
os.system("pip install faiss-cpu")
|
11 |
|
12 |
def log(message):
|
13 |
print(f"β
{message}")
|
14 |
|
|
|
15 |
# β
Load the datasets
|
16 |
+
log("π₯ Loading datasets...")
|
17 |
datasets = {
|
18 |
"sales": load_dataset("goendalf666/sales-conversations", trust_remote_code=True),
|
19 |
"blended": load_dataset("blended_skill_talk", trust_remote_code=True),
|
20 |
"dialog": load_dataset("daily_dialog", trust_remote_code=True),
|
21 |
"multiwoz": load_dataset("multi_woz_v22", trust_remote_code=True),
|
22 |
}
|
23 |
+
log("β
Datasets loaded.")
|
24 |
+
|
25 |
+
# β
Step 1: Run Embedding Script (Import and Run)
|
26 |
+
log("π Running embeddings script...")
|
27 |
+
import embeddings # This will automatically run embeddings.py
|
28 |
|
29 |
+
time.sleep(5) # Wait for embeddings to be created
|
|
|
|
|
30 |
|
31 |
+
# β
Step 2: Check FAISS index
|
32 |
+
def check_faiss():
|
33 |
+
index_path = "my_embeddings" # Adjust if needed
|
34 |
+
|
35 |
+
try:
|
36 |
+
index = faiss.read_index(index_path)
|
37 |
+
num_vectors = index.ntotal
|
38 |
+
dim = index.d
|
39 |
+
|
40 |
+
if num_vectors > 0:
|
41 |
+
return f"π FAISS index contains {num_vectors} vectors.\nβ
Embedding dimension: {dim}"
|
42 |
+
else:
|
43 |
+
return "β οΈ No embeddings found in FAISS index!"
|
44 |
+
|
45 |
+
except Exception as e:
|
46 |
+
return f"β ERROR: Failed to load FAISS index - {e}"
|
47 |
+
|
48 |
+
log("π Checking FAISS embeddings...")
|
49 |
+
faiss_status = check_faiss()
|
50 |
+
log(faiss_status)
|
51 |
+
|
52 |
+
# β
Step 3: Initialize chatbot
|
53 |
client = InferenceClient("mistralai/Mistral-7B-Instruct-v0.3")
|
54 |
|
55 |
+
def respond(message, history, system_message, max_tokens, temperature, top_p):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
messages = [{"role": "system", "content": system_message}]
|
57 |
|
58 |
for val in history:
|
|
|
62 |
messages.append({"role": "assistant", "content": val[1]})
|
63 |
|
64 |
messages.append({"role": "user", "content": message})
|
|
|
65 |
response = ""
|
66 |
|
67 |
for message in client.chat_completions(
|
68 |
+
messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p
|
|
|
|
|
|
|
|
|
69 |
):
|
70 |
token = message["choices"][0]["delta"]["content"]
|
71 |
response += token
|
72 |
yield response
|
73 |
|
74 |
+
# β
Step 4: Start Chatbot Interface
|
|
|
75 |
demo = gr.ChatInterface(
|
76 |
respond,
|
77 |
additional_inputs=[
|
78 |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
79 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
80 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
81 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
],
|
83 |
)
|
84 |
|
85 |
+
log("β
All systems go! Launching chatbot...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
if __name__ == "__main__":
|
87 |
demo.launch()
|
88 |
+
|