update
Browse files- embeddings.py +40 -21
embeddings.py
CHANGED
@@ -1,19 +1,36 @@
|
|
1 |
-
|
2 |
-
|
3 |
import faiss
|
4 |
import torch
|
5 |
import numpy as np
|
6 |
-
import
|
|
|
|
|
|
|
|
|
7 |
|
8 |
def log(message):
|
9 |
print(f"β
{message}")
|
10 |
|
11 |
-
# β
Load datasets
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
datasets = {
|
13 |
-
"sales":
|
14 |
-
"blended":
|
15 |
-
"dialog":
|
16 |
-
"multiwoz":
|
17 |
}
|
18 |
|
19 |
# β
Load MiniLM model for embeddings
|
@@ -30,18 +47,19 @@ def embed_text(texts):
|
|
30 |
|
31 |
# β
Batch processing function
|
32 |
def create_embeddings(dataset_name, dataset, batch_size=100):
|
33 |
-
|
|
|
34 |
|
35 |
-
if dataset_name == "
|
36 |
-
texts = [" ".join(row.values()) for row in dataset
|
37 |
-
elif dataset_name == "
|
38 |
-
texts = [" ".join(row["free_messages"] + row["guided_messages"]) for row in dataset
|
39 |
-
elif dataset_name == "
|
40 |
-
texts = [" ".join(row["dialog"]) for row in dataset
|
41 |
-
elif dataset_name == "
|
42 |
-
texts = [" ".join(row["turns"]["utterance"]) for row in dataset
|
43 |
else:
|
44 |
-
|
45 |
texts = []
|
46 |
|
47 |
log(f"β
Extracted {len(texts)} texts from {dataset_name}.")
|
@@ -78,7 +96,8 @@ def save_embeddings_to_faiss(embeddings, index_name="my_embeddings"):
|
|
78 |
|
79 |
# β
Run embeddings process
|
80 |
for name, dataset in datasets.items():
|
81 |
-
|
82 |
-
|
83 |
-
|
|
|
84 |
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
import faiss
|
4 |
import torch
|
5 |
import numpy as np
|
6 |
+
from transformers import AutoTokenizer, AutoModel
|
7 |
+
|
8 |
+
# β
Set up directories
|
9 |
+
DATA_DIR = "data"
|
10 |
+
os.makedirs(DATA_DIR, exist_ok=True) # Ensure data directory exists
|
11 |
|
12 |
def log(message):
|
13 |
print(f"β
{message}")
|
14 |
|
15 |
+
# β
Load datasets from stored JSON files
|
16 |
+
def load_local_dataset(dataset_name):
|
17 |
+
file_path = os.path.join(DATA_DIR, f"{dataset_name}.json")
|
18 |
+
|
19 |
+
if os.path.exists(file_path):
|
20 |
+
with open(file_path, "r") as f:
|
21 |
+
data = json.load(f)
|
22 |
+
log(f"π Loaded {dataset_name} from {file_path}")
|
23 |
+
return data
|
24 |
+
else:
|
25 |
+
log(f"β ERROR: {dataset_name} file not found!")
|
26 |
+
return None
|
27 |
+
|
28 |
+
# β
Load all datasets from storage
|
29 |
datasets = {
|
30 |
+
"sales": load_local_dataset("sales"),
|
31 |
+
"blended": load_local_dataset("blended"),
|
32 |
+
"dialog": load_local_dataset("dialog"),
|
33 |
+
"multiwoz": load_local_dataset("multiwoz"),
|
34 |
}
|
35 |
|
36 |
# β
Load MiniLM model for embeddings
|
|
|
47 |
|
48 |
# β
Batch processing function
|
49 |
def create_embeddings(dataset_name, dataset, batch_size=100):
|
50 |
+
"""Extracts texts, embeds them in batches, and logs progress."""
|
51 |
+
log(f"π₯ Creating embeddings for {dataset_name}...")
|
52 |
|
53 |
+
if dataset_name == "sales":
|
54 |
+
texts = [" ".join(row.values()) for row in dataset]
|
55 |
+
elif dataset_name == "blended":
|
56 |
+
texts = [" ".join(row["free_messages"] + row["guided_messages"]) for row in dataset]
|
57 |
+
elif dataset_name == "dialog":
|
58 |
+
texts = [" ".join(row["dialog"]) for row in dataset]
|
59 |
+
elif dataset_name == "multiwoz":
|
60 |
+
texts = [" ".join(row["turns"]["utterance"]) for row in dataset]
|
61 |
else:
|
62 |
+
log(f"β οΈ Warning: Dataset {dataset_name} format unknown!")
|
63 |
texts = []
|
64 |
|
65 |
log(f"β
Extracted {len(texts)} texts from {dataset_name}.")
|
|
|
96 |
|
97 |
# β
Run embeddings process
|
98 |
for name, dataset in datasets.items():
|
99 |
+
if dataset: # Skip if dataset failed to load
|
100 |
+
embeddings = create_embeddings(name, dataset, batch_size=100)
|
101 |
+
save_embeddings_to_faiss(embeddings, index_name=name)
|
102 |
+
log(f"β
Embeddings for {name} saved to FAISS.")
|
103 |
|