restoring datasets
Browse files
app.py
CHANGED
@@ -1,78 +1,83 @@
|
|
1 |
-
|
2 |
-
from
|
3 |
import faiss
|
|
|
4 |
import numpy as np
|
5 |
-
import os
|
6 |
import time
|
7 |
-
import threading # β
Run embeddings in parallel
|
8 |
-
|
9 |
-
# β
Ensure FAISS is installed
|
10 |
-
os.system("pip install faiss-cpu")
|
11 |
|
12 |
def log(message):
|
13 |
print(f"β
{message}")
|
14 |
|
15 |
-
# β
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
|
|
|
|
20 |
|
21 |
-
|
22 |
-
|
|
|
|
|
23 |
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
27 |
|
28 |
-
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
-
|
32 |
-
index = faiss.read_index(index_path)
|
33 |
-
num_vectors = index.ntotal
|
34 |
-
dim = index.d
|
35 |
-
return f"π FAISS index contains {num_vectors} vectors.\nβ
Embedding dimension: {dim}"
|
36 |
-
except Exception as e:
|
37 |
-
return f"β ERROR: Failed to load FAISS index - {e}"
|
38 |
|
39 |
-
|
40 |
-
|
41 |
-
|
|
|
|
|
|
|
42 |
|
43 |
-
# β
|
44 |
-
|
45 |
|
46 |
-
|
47 |
-
|
48 |
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
if val[1]:
|
53 |
-
messages.append({"role": "assistant", "content": val[1]})
|
54 |
|
55 |
-
|
56 |
-
|
|
|
57 |
|
58 |
-
|
59 |
-
|
60 |
-
)
|
61 |
-
token = message["choices"][0]["delta"]["content"]
|
62 |
-
response += token
|
63 |
-
yield response
|
64 |
|
65 |
-
# β
|
66 |
-
|
67 |
-
|
68 |
-
additional_inputs=[
|
69 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
70 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
71 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
72 |
-
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
|
73 |
-
],
|
74 |
-
)
|
75 |
|
76 |
-
|
77 |
-
|
78 |
-
|
|
|
|
|
|
1 |
+
from datasets import load_dataset
|
2 |
+
from transformers import AutoTokenizer, AutoModel
|
3 |
import faiss
|
4 |
+
import torch
|
5 |
import numpy as np
|
|
|
6 |
import time
|
|
|
|
|
|
|
|
|
7 |
|
8 |
def log(message):
|
9 |
print(f"β
{message}")
|
10 |
|
11 |
+
# β
Load datasets dynamically
|
12 |
+
datasets = {
|
13 |
+
"sales": load_dataset("goendalf666/sales-conversations"),
|
14 |
+
"blended": load_dataset("blended_skill_talk"),
|
15 |
+
"dialog": load_dataset("daily_dialog"),
|
16 |
+
"multiwoz": load_dataset("multi_woz_v22"),
|
17 |
+
}
|
18 |
|
19 |
+
# β
Load MiniLM model for embeddings
|
20 |
+
model_name = "sentence-transformers/all-MiniLM-L6-v2"
|
21 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
22 |
+
model = AutoModel.from_pretrained(model_name)
|
23 |
|
24 |
+
def embed_text(texts):
|
25 |
+
"""Generate embeddings for a batch of texts."""
|
26 |
+
inputs = tokenizer(texts, padding=True, truncation=True, return_tensors="pt", max_length=512)
|
27 |
+
with torch.no_grad():
|
28 |
+
embeddings = model(**inputs).last_hidden_state.mean(dim=1).cpu().numpy()
|
29 |
+
return embeddings
|
30 |
|
31 |
+
# β
Batch processing function
|
32 |
+
def create_embeddings(dataset_name, dataset, batch_size=100):
|
33 |
+
log(f"π₯ Creating embeddings for {dataset_name}...")
|
34 |
+
|
35 |
+
# β
Extract text based on dataset structure
|
36 |
+
if dataset_name == "sales":
|
37 |
+
texts = [" ".join(row.values()) for row in dataset["train"]]
|
38 |
+
elif dataset_name == "blended":
|
39 |
+
texts = [" ".join(row["free_messages"] + row["guided_messages"]) for row in dataset["train"]]
|
40 |
+
elif dataset_name == "dialog":
|
41 |
+
texts = [" ".join(row["dialog"]) for row in dataset["train"]]
|
42 |
+
elif dataset_name == "multiwoz":
|
43 |
+
texts = [" ".join(row["turns"]["utterance"]) for row in dataset["train"]]
|
44 |
+
else:
|
45 |
+
log(f"β οΈ Unknown dataset structure for {dataset_name}!")
|
46 |
+
texts = []
|
47 |
|
48 |
+
log(f"β
Extracted {len(texts)} texts from {dataset_name}.")
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
+
# β
Process in batches
|
51 |
+
all_embeddings = []
|
52 |
+
for i in range(0, len(texts), batch_size):
|
53 |
+
batch = texts[i : i + batch_size]
|
54 |
+
batch_embeddings = embed_text(batch)
|
55 |
+
all_embeddings.append(batch_embeddings)
|
56 |
|
57 |
+
# β
Log progress
|
58 |
+
log(f"π Processed {i + len(batch)}/{len(texts)} embeddings for {dataset_name}...")
|
59 |
|
60 |
+
# β
Simulate delay for monitoring
|
61 |
+
time.sleep(1)
|
62 |
|
63 |
+
# β
Convert list of numpy arrays to a single numpy array
|
64 |
+
all_embeddings = np.vstack(all_embeddings)
|
65 |
+
return all_embeddings
|
|
|
|
|
66 |
|
67 |
+
# β
Save embeddings to FAISS with unique filename
|
68 |
+
def save_embeddings_to_faiss(embeddings, index_name="my_embeddings"):
|
69 |
+
index_file = f"{index_name}.faiss"
|
70 |
|
71 |
+
# β
Create new FAISS index
|
72 |
+
index = faiss.IndexFlatL2(embeddings.shape[1])
|
73 |
+
index.add(np.array(embeddings).astype(np.float32))
|
|
|
|
|
|
|
74 |
|
75 |
+
# β
Save FAISS index
|
76 |
+
faiss.write_index(index, index_file)
|
77 |
+
log(f"β
Saved FAISS index: {index_file}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
|
79 |
+
# β
Run embedding process for all datasets
|
80 |
+
for name, dataset in datasets.items():
|
81 |
+
embeddings = create_embeddings(name, dataset, batch_size=100)
|
82 |
+
save_embeddings_to_faiss(embeddings, index_name=name)
|
83 |
+
log(f"β
Embeddings for {name} saved to FAISS.")
|