sms_agent / app.py
abrah926's picture
data.dir
e925ddf verified
raw
history blame
3.27 kB
import gradio as gr
from huggingface_hub import InferenceClient
from datasets import load_dataset
import faiss
import numpy as np
import os
import time
import json
# βœ… Ensure FAISS is installed
os.system("pip install faiss-cpu")
def log(message):
print(f"βœ… {message}")
import os
import json
from datasets import load_dataset
DATA_DIR = "data"
os.makedirs(DATA_DIR, exist_ok=True) # Ensure directory exists
# βœ… List of datasets
datasets = {
"sales": "goendalf666/sales-conversations",
"blended": "blended_skill_talk",
"dialog": "daily_dialog",
"multiwoz": "multi_woz_v22",
}
# βœ… Save datasets to JSON
for name, hf_name in datasets.items():
print(f"πŸ“₯ Downloading {name} dataset...")
dataset = load_dataset(hf_name)
# Extract training data
train_data = dataset["train"]
# Convert dataset to list of dictionaries
data_list = [dict(row) for row in train_data]
# Save to JSON
file_path = os.path.join(DATA_DIR, f"{name}.json")
with open(file_path, "w") as f:
json.dump(data_list, f, indent=2)
print(f"βœ… {name} dataset saved to {file_path}")
# βœ… Step 1: Run Embedding Script (Import and Run)
log("πŸš€ Running embeddings script...")
import embeddings # This will automatically run embeddings.py
time.sleep(5) # Wait for embeddings to be created
# βœ… Step 2: Check FAISS index
def check_faiss():
index_path = "my_embeddings" # Adjust if needed
try:
index = faiss.read_index(index_path)
num_vectors = index.ntotal
dim = index.d
if num_vectors > 0:
return f"πŸ“Š FAISS index contains {num_vectors} vectors.\nβœ… Embedding dimension: {dim}"
else:
return "⚠️ No embeddings found in FAISS index!"
except Exception as e:
return f"❌ ERROR: Failed to load FAISS index - {e}"
log("πŸ” Checking FAISS embeddings...")
faiss_status = check_faiss()
log(faiss_status)
# βœ… Step 3: Initialize chatbot
client = InferenceClient("mistralai/Mistral-7B-Instruct-v0.3")
def respond(message, history, system_message, max_tokens, temperature, top_p):
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
for message in client.chat_completions(
messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p
):
token = message["choices"][0]["delta"]["content"]
response += token
yield response
# βœ… Step 4: Start Chatbot Interface
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
],
)
log("βœ… All systems go! Launching chatbot...")
if __name__ == "__main__":
demo.launch()