sms_agent / app.py
abrah926's picture
using data.dir for datasets
29d1f72 verified
raw
history blame
3.16 kB
import gradio as gr
from huggingface_hub import InferenceClient
from datasets import load_dataset
import faiss
import numpy as np
import os
import time
import json
# βœ… Ensure FAISS is installed
os.system("pip install faiss-cpu")
def log(message):
print(f"βœ… {message}")
DATA_DIR = "data"
def load_local_dataset(dataset_name):
"""Load a dataset from a JSON file."""
file_path = os.path.join(DATA_DIR, f"{dataset_name}.json")
if os.path.exists(file_path):
with open(file_path, "r") as f:
data = json.load(f)
print(f"βœ… Loaded {dataset_name} from {file_path}")
return data
else:
print(f"❌ ERROR: {dataset_name} file not found!")
return None
# βœ… Load all datasets from local storage
datasets = {
"sales": load_local_dataset("sales"),
"blended": load_local_dataset("blended"),
"dialog": load_local_dataset("dialog"),
"multiwoz": load_local_dataset("multiwoz"),
}
print("βœ… Datasets loaded from local storage!")
# βœ… Step 1: Run Embedding Script (Import and Run)
log("πŸš€ Running embeddings script...")
import embeddings # This will automatically run embeddings.py
time.sleep(5) # Wait for embeddings to be created
# βœ… Step 2: Check FAISS index
def check_faiss():
index_path = "my_embeddings" # Adjust if needed
try:
index = faiss.read_index(index_path)
num_vectors = index.ntotal
dim = index.d
if num_vectors > 0:
return f"πŸ“Š FAISS index contains {num_vectors} vectors.\nβœ… Embedding dimension: {dim}"
else:
return "⚠️ No embeddings found in FAISS index!"
except Exception as e:
return f"❌ ERROR: Failed to load FAISS index - {e}"
log("πŸ” Checking FAISS embeddings...")
faiss_status = check_faiss()
log(faiss_status)
# βœ… Step 3: Initialize chatbot
client = InferenceClient("mistralai/Mistral-7B-Instruct-v0.3")
def respond(message, history, system_message, max_tokens, temperature, top_p):
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
for message in client.chat_completions(
messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p
):
token = message["choices"][0]["delta"]["content"]
response += token
yield response
# βœ… Step 4: Start Chatbot Interface
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
],
)
log("βœ… All systems go! Launching chatbot...")
if __name__ == "__main__":
demo.launch()