File size: 3,385 Bytes
3f5fd34
 
 
 
 
 
dfbcc66
 
 
 
3f5fd34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f76d804
3f5fd34
 
f76d804
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f5fd34
 
 
 
 
 
 
 
 
 
 
 
 
 
c007e39
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
from datasets import load_dataset
from transformers import AutoTokenizer, AutoModel
import faiss
import torch
import numpy as np

def log(message):
    print(f"βœ… {message}")


# βœ… Load datasets
datasets = {
    "sales": load_dataset("goendalf666/sales-conversations"),
    "blended": load_dataset("blended_skill_talk"),
    "dialog": load_dataset("daily_dialog"),
    "multiwoz": load_dataset("multi_woz_v22"),
}

# βœ… Load MiniLM model and tokenizer
model_name = "sentence-transformers/all-MiniLM-L6-v2"  # Model for embeddings
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModel.from_pretrained(model_name)

def embed_text(texts):
    inputs = tokenizer(texts, padding=True, truncation=True, return_tensors="pt", max_length=512)
    with torch.no_grad():
        embeddings = model(**inputs).last_hidden_state.mean(dim=1).cpu().numpy()
    return embeddings


# βœ… Extract and embed the datasets
def create_embeddings(dataset_name, dataset):
    print(f"πŸ“₯ Creating embeddings for {dataset_name}...")
    
    if dataset_name == "goendalf666/sales-conversations":
        texts = [" ".join(row.values()) for row in dataset["train"]]

    elif dataset_name == "AlekseyKorshuk/persona-chat":
        texts = [" ".join(utterance["candidates"]) for utterance in dataset["train"]["utterances"]]

    elif dataset_name == "blended_skill_talk":
        texts = [" ".join(row["free_messages"] + row["guided_messages"]) for row in dataset["train"]]

    elif dataset_name == "daily_dialog":
        texts = [" ".join(row["dialog"]) for row in dataset["train"]]

    elif dataset_name == "multi_woz_v22":
        texts = [" ".join(row["turns"]["utterance"]) for row in dataset["train"]]

    else:
        print(f"⚠️ Warning: Dataset {dataset_name} not handled properly!")
        texts = []

    # βœ… Verify dataset extraction
    if len(texts) == 0:
        print(f"❌ ERROR: No text extracted from {dataset_name}! Check dataset structure.")
    else:
        print(f"βœ… Extracted {len(texts)} texts from {dataset_name}. Sample:\n{texts[:3]}")

    return texts

# βœ… Embed and store in FAISS
for name, dataset in datasets.items():
    texts = create_embeddings(name, dataset)

    if len(texts) > 0:  # βœ… Only embed if texts exist
        embeddings = embed_text(texts)
        print(f"βœ… Generated embeddings shape: {embeddings.shape}")

        index = save_embeddings_to_faiss(embeddings)
        print(f"βœ… Embeddings for {name} saved to FAISS.")
    else:
        print(f"⚠️ Skipping embedding for {name} (No valid texts).")



# βœ… Save embeddings to a database
def save_embeddings_to_faiss(embeddings, index_name="my_embeddings"):
    print("Saving embeddings to FAISS...")
    index = faiss.IndexFlatL2(embeddings.shape[1])  # Assuming 512-dimensional embeddings
    index.add(np.array(embeddings).astype(np.float32))
    faiss.write_index(index, index_name)  # Save FAISS index to file
    return index

# βœ… Create embeddings for all datasets
for name, dataset in datasets.items():
    embeddings = create_embeddings(name, dataset)
    index = save_embeddings_to_faiss(embeddings)
    print(f"Embeddings for {name} saved to FAISS.")


# βœ… Check FAISS index after saving
index = faiss.read_index("my_embeddings")  # Load the index
print(f"πŸ“Š FAISS index contains {index.ntotal} vectors.")  # Check how many embeddings were stored