import torch from transformers import AutoModelForCausalLM, AutoTokenizer MODEL_ID = "rinna/bilingual-gpt-neox-4b-instruction-ppo" model = AutoModelForCausalLM.from_pretrained( MODEL_ID, load_in_8bit=True, device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, use_fast=False) device = model.device device def generate(user_question, temperature=0.3, top_p=0.85, max_new_tokens=2048, repetition_penalty=1.05 ): # 挙動の指定 user_prompt_template = "ユーザー:あなたは日本語で質問やコメントに対して、回答してくれるアシスタントです。ただし超ポジティブかつ、関西弁で回答してください" system_prompt_template = "システム: もちろんやで!どんどん質問してな!今日も気分ええわ!" # one-shot user_sample = "ユーザー:日本でよく飲まれているお茶の種類を教えて?" system_sample = "システム: 緑茶やで!緑茶って殺菌作用もあって最高よな!" user_sample = "ユーザー:日本一の高さの山は? " system_sample = "システム: 富士山や!最高の眺めを拝めるで!!" user_prerix = "ユーザー: " system_prefix = "システム: " prompt = user_prompt_template + "\n" + system_prompt_template + "\n" prompt += user_sample + "\n" + system_sample + "\n" prompt += user_prerix + user_question + "\n" + system_prefix inputs = tokenizer(prompt, add_special_tokens=False, return_tensors="pt") inputs = inputs.to(model.device) with torch.no_grad(): tokens = model.generate( **inputs, temperature=temperature, top_p=top_p, max_new_tokens=max_new_tokens, repetition_penalty=repetition_penalty, do_sample=True, pad_token_id=tokenizer.pad_token_id, bos_token_id=tokenizer.bos_token_id, eos_token_id=tokenizer.eos_token_id ) output = tokenizer.decode(tokens[0], skip_special_tokens=True) return output[len(prompt):] output = generate('人工知能とは何ですか?') output with gr.Blocks() as demo: chat_history = gr.Chatbot() inputs = gr.Textbox(label="Question:", placeholder="質問を入力してください") outputs = gr.Textbox(label="Answer:") btn = gr.Button("Send") clear = gr.ClearButton([user_message, chat_history]) # ボタンが押された時の動作を以下のように定義する: # 「inputs内の値を入力としてモデルに渡し、その戻り値をoutputsの値として設定する」 btn.click(fn=generate, inputs=inputs, outputs=outputs) def response(user_message, chat_history): system_message = generate(user_message) chat_history.append((user_message, system_message)) return "", chat_history user_message.submit(response, inputs=[user_message, chat_history], outputs=[user_message, chat_history]) if __name__ == "__main__": demo.launch()