Spaces:
Sleeping
Sleeping
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
MODEL_ID = "rinna/bilingual-gpt-neox-4b-instruction-ppo" | |
model = AutoModelForCausalLM.from_pretrained( | |
MODEL_ID, | |
load_in_8bit=True, | |
device_map="auto" | |
) | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, use_fast=False) | |
device = model.device | |
device | |
def generate(user_question, | |
temperature=0.3, | |
top_p=0.85, | |
max_new_tokens=2048, | |
repetition_penalty=1.05 | |
): | |
# 挙動の指定 | |
user_prompt_template = "ユーザー:あなたは日本語で質問やコメントに対して、回答してくれるアシスタントです。ただし超ポジティブかつ、関西弁で回答してください" | |
system_prompt_template = "システム: もちろんやで!どんどん質問してな!今日も気分ええわ!" | |
# one-shot | |
user_sample = "ユーザー:日本でよく飲まれているお茶の種類を教えて?" | |
system_sample = "システム: 緑茶やで!緑茶って殺菌作用もあって最高よな!" | |
user_sample = "ユーザー:日本一の高さの山は? " | |
system_sample = "システム: 富士山や!最高の眺めを拝めるで!!" | |
user_prerix = "ユーザー: " | |
system_prefix = "システム: " | |
prompt = user_prompt_template + "\n" + system_prompt_template + "\n" | |
prompt += user_sample + "\n" + system_sample + "\n" | |
prompt += user_prerix + user_question + "\n" + system_prefix | |
inputs = tokenizer(prompt, add_special_tokens=False, return_tensors="pt") | |
inputs = inputs.to(model.device) | |
with torch.no_grad(): | |
tokens = model.generate( | |
**inputs, | |
temperature=temperature, | |
top_p=top_p, | |
max_new_tokens=max_new_tokens, | |
repetition_penalty=repetition_penalty, | |
do_sample=True, | |
pad_token_id=tokenizer.pad_token_id, | |
bos_token_id=tokenizer.bos_token_id, | |
eos_token_id=tokenizer.eos_token_id | |
) | |
output = tokenizer.decode(tokens[0], skip_special_tokens=True) | |
return output[len(prompt):] | |
output = generate('人工知能とは何ですか?') | |
output | |
with gr.Blocks() as demo: | |
chat_history = gr.Chatbot() | |
inputs = gr.Textbox(label="Question:", placeholder="質問を入力してください") | |
outputs = gr.Textbox(label="Answer:") | |
btn = gr.Button("Send") | |
clear = gr.ClearButton([user_message, chat_history]) | |
# ボタンが押された時の動作を以下のように定義する: | |
# 「inputs内の値を入力としてモデルに渡し、その戻り値をoutputsの値として設定する」 | |
btn.click(fn=generate, inputs=inputs, outputs=outputs) | |
def response(user_message, chat_history): | |
system_message = generate(user_message) | |
chat_history.append((user_message, system_message)) | |
return "", chat_history | |
user_message.submit(response, inputs=[user_message, chat_history], outputs=[user_message, chat_history]) | |
if __name__ == "__main__": | |
demo.launch() | |