from fastapi import FastAPI, HTTPException from fastapi.responses import JSONResponse from pydantic import BaseModel from PIL import Image from io import BytesIO import base64 import torch import re import logging import asyncio from contextlib import asynccontextmanager # Configure logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) # Initialize global variables model = None processor = None tokenizer = None model_name = "microsoft/GUI-Actor-2B-Qwen2-VL" model_loaded = False async def load_model(): """Load model with proper error handling and fallback strategies""" global model, processor, tokenizer, model_loaded try: logger.info("Starting model loading...") # Try specific Qwen2VL classes first try: logger.info("Attempting to load with Qwen2VL specific classes...") from transformers import Qwen2VLProcessor, Qwen2VLForConditionalGeneration processor = Qwen2VLProcessor.from_pretrained( model_name, trust_remote_code=True ) # Configure padding for processor if hasattr(processor, 'tokenizer'): processor.tokenizer.padding_side = "left" # Important for Qwen2-VL if processor.tokenizer.pad_token is None: processor.tokenizer.pad_token = processor.tokenizer.eos_token model = Qwen2VLForConditionalGeneration.from_pretrained( model_name, torch_dtype=torch.float32, device_map=None, # CPU only trust_remote_code=True, low_cpu_mem_usage=True ).eval() logger.info("Successfully loaded with Qwen2VL specific classes") except Exception as e1: logger.warning(f"Failed with Qwen2VL classes: {e1}") logger.info("Trying AutoProcessor and AutoModel fallback...") try: from transformers import AutoProcessor, AutoModel processor = AutoProcessor.from_pretrained( model_name, trust_remote_code=True ) # Configure padding for processor if hasattr(processor, 'tokenizer'): processor.tokenizer.padding_side = "left" if processor.tokenizer.pad_token is None: processor.tokenizer.pad_token = processor.tokenizer.eos_token model = AutoModel.from_pretrained( model_name, torch_dtype=torch.float32, device_map=None, trust_remote_code=True, low_cpu_mem_usage=True ).eval() logger.info("Successfully loaded with Auto classes") except Exception as e2: logger.warning(f"Failed with Auto classes: {e2}") logger.info("Trying generic transformers approach...") # Last fallback - try loading as generic model from transformers import AutoConfig, AutoTokenizer import transformers config = AutoConfig.from_pretrained(model_name, trust_remote_code=True) logger.info(f"Model config type: {type(config)}") # Try to find the right model class if hasattr(transformers, 'Qwen2VLForConditionalGeneration'): ModelClass = getattr(transformers, 'Qwen2VLForConditionalGeneration') elif hasattr(transformers, 'AutoModelForVision2Seq'): ModelClass = getattr(transformers, 'AutoModelForVision2Seq') else: raise Exception("No suitable model class found") processor = AutoProcessor.from_pretrained( model_name, trust_remote_code=True ) # Configure padding if hasattr(processor, 'tokenizer'): processor.tokenizer.padding_side = "left" if processor.tokenizer.pad_token is None: processor.tokenizer.pad_token = processor.tokenizer.eos_token model = ModelClass.from_pretrained( model_name, config=config, torch_dtype=torch.float32, device_map=None, trust_remote_code=True, low_cpu_mem_usage=True ).eval() # Verify processor and model are loaded if processor is None or model is None: raise Exception("Failed to load processor or model") tokenizer = processor.tokenizer logger.info("Model and processor loaded successfully!") model_loaded = True return True except Exception as e: logger.error(f"Error loading model: {e}") model_loaded = False return False @asynccontextmanager async def lifespan(app: FastAPI): # Startup logger.info("Starting up GUI-Actor API...") await load_model() yield # Shutdown logger.info("Shutting down GUI-Actor API...") # Initialize FastAPI app with lifespan app = FastAPI( title="GUI-Actor API", version="1.0.0", lifespan=lifespan ) class Base64Request(BaseModel): image_base64: str instruction: str def extract_coordinates(text): """ Extract coordinates from model output text """ # Pattern untuk mencari koordinat dalam berbagai format patterns = [ r'click\s*\(\s*(\d+(?:\.\d+)?)\s*,\s*(\d+(?:\.\d+)?)\s*\)', # click(x, y) r'\[\s*(\d+(?:\.\d+)?)\s*,\s*(\d+(?:\.\d+)?)\s*\]', # [x, y] r'(\d+(?:\.\d+)?)\s*,\s*(\d+(?:\.\d+)?)', # x, y r'point:\s*\(\s*(\d+(?:\.\d+)?)\s*,\s*(\d+(?:\.\d+)?)\s*\)', # point: (x, y) ] for pattern in patterns: matches = re.findall(pattern, text.lower()) if matches: try: x, y = float(matches[0][0]), float(matches[0][1]) # Normalize jika koordinat > 1 (asumsi pixel coordinates) if x > 1 or y > 1: # Asumsi resolusi 1920x1080 untuk normalisasi x = x / 1920 if x > 1 else x y = y / 1080 if y > 1 else y return [(x, y)] except (ValueError, IndexError): continue # Default ke center jika tidak ditemukan return [(0.5, 0.5)] def cpu_inference(conversation, model, tokenizer, processor): try: # Apply chat template prompt = processor.apply_chat_template( conversation, tokenize=False, add_generation_prompt=True ) image = conversation[1]["content"][0]["image"] # FIXED: Process inputs dengan padding yang benar inputs = processor( text=[prompt], # Wrap dalam list untuk batch processing images=[image], # Wrap dalam list untuk batch processing return_tensors="pt", padding=True, # Enable padding truncation=True, max_length=512 ) # FIXED: Pastikan semua tensor memiliki batch dimension yang konsisten for key, value in inputs.items(): if isinstance(value, torch.Tensor): logger.debug(f"Input {key} shape: {value.shape}") # FIXED: Set pad_token_id jika belum ada pad_token_id = tokenizer.pad_token_id if pad_token_id is None: pad_token_id = tokenizer.eos_token_id if pad_token_id is None: pad_token_id = 0 # Fallback with torch.no_grad(): outputs = model.generate( **inputs, max_new_tokens=256, do_sample=True, temperature=0.3, top_p=0.8, pad_token_id=pad_token_id, attention_mask=inputs.get('attention_mask', None) # FIXED: Explicit attention mask ) # FIXED: Extract generated tokens correctly input_length = inputs["input_ids"].shape[1] generated_ids = outputs[0][input_length:] response = tokenizer.decode(generated_ids, skip_special_tokens=True) coordinates = extract_coordinates(response) return { "topk_points": coordinates, "response": response.strip(), "success": True } except Exception as e: logger.error(f"Inference error: {e}") # FIXED: More detailed error logging import traceback logger.error(f"Full traceback: {traceback.format_exc()}") return { "topk_points": [(0.5, 0.5)], "response": f"Error during inference: {str(e)}", "success": False } @app.get("/") async def root(): return { "message": "GUI-Actor API is running", "status": "healthy", "model_loaded": model_loaded, "model_name": model_name } @app.post("/click/base64") async def predict_click_base64(data: Base64Request): if not model_loaded: raise HTTPException( status_code=503, detail="Model not loaded properly" ) try: # Decode base64 to image try: # Handle data URL format if "," in data.image_base64: image_data = base64.b64decode(data.image_base64.split(",")[-1]) else: image_data = base64.b64decode(data.image_base64) except Exception as e: raise HTTPException(status_code=400, detail=f"Invalid base64 image: {e}") try: pil_image = Image.open(BytesIO(image_data)).convert("RGB") # FIXED: Log image dimensions for debugging logger.debug(f"Image dimensions: {pil_image.size}") except Exception as e: raise HTTPException(status_code=400, detail=f"Invalid image format: {e}") # FIXED: Improved conversation structure conversation = [ { "role": "system", "content": [ { "type": "text", "text": "You are a GUI agent. You are given a task and a screenshot of the screen. You need to perform a series of pyautogui actions to complete the task. Please provide the click coordinates.", } ] }, { "role": "user", "content": [ { "type": "image", "image": pil_image, }, { "type": "text", "text": data.instruction, }, ], }, ] # Run inference pred = cpu_inference(conversation, model, tokenizer, processor) if not pred["success"]: logger.warning(f"Inference failed: {pred['response']}") px, py = pred["topk_points"][0] return JSONResponse(content={ "x": round(px, 4), "y": round(py, 4), "response": pred["response"], "success": pred["success"] }) except HTTPException: raise except Exception as e: logger.error(f"Prediction error: {e}") import traceback logger.error(f"Full traceback: {traceback.format_exc()}") raise HTTPException( status_code=500, detail=f"Internal server error: {str(e)}" ) @app.get("/health") async def health_check(): return { "status": "healthy" if model_loaded else "unhealthy", "model": model_name, "device": "cpu", "torch_dtype": "float32", "model_loaded": model_loaded } @app.get("/debug") async def debug_info(): """Debug endpoint to check model loading status""" import transformers available_classes = [attr for attr in dir(transformers) if 'Qwen' in attr or 'VL' in attr] debug_info = { "model_loaded": model_loaded, "processor_type": type(processor).__name__ if processor else None, "model_type": type(model).__name__ if model else None, "available_qwen_classes": available_classes, "transformers_version": transformers.__version__ } # FIXED: Add tokenizer info for debugging if processor and hasattr(processor, 'tokenizer'): debug_info.update({ "tokenizer_type": type(processor.tokenizer).__name__, "pad_token": processor.tokenizer.pad_token, "pad_token_id": processor.tokenizer.pad_token_id, "eos_token": processor.tokenizer.eos_token, "eos_token_id": processor.tokenizer.eos_token_id, "padding_side": processor.tokenizer.padding_side }) return debug_info