GUI-Agent / app.py
abiyyufahri's picture
Update app.py
d5d8986 verified
from fastapi import FastAPI, HTTPException
from fastapi.responses import JSONResponse
from pydantic import BaseModel
from PIL import Image
from io import BytesIO
import base64
import torch
import re
import logging
import asyncio
from contextlib import asynccontextmanager
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Initialize global variables
model = None
processor = None
tokenizer = None
model_name = "microsoft/GUI-Actor-2B-Qwen2-VL"
model_loaded = False
async def load_model():
"""Load model with proper error handling and fallback strategies"""
global model, processor, tokenizer, model_loaded
try:
logger.info("Starting model loading...")
# Try specific Qwen2VL classes first
try:
logger.info("Attempting to load with Qwen2VL specific classes...")
from transformers import Qwen2VLProcessor, Qwen2VLForConditionalGeneration
processor = Qwen2VLProcessor.from_pretrained(
model_name,
trust_remote_code=True
)
# Configure padding for processor
if hasattr(processor, 'tokenizer'):
processor.tokenizer.padding_side = "left" # Important for Qwen2-VL
if processor.tokenizer.pad_token is None:
processor.tokenizer.pad_token = processor.tokenizer.eos_token
model = Qwen2VLForConditionalGeneration.from_pretrained(
model_name,
torch_dtype=torch.float32,
device_map=None, # CPU only
trust_remote_code=True,
low_cpu_mem_usage=True
).eval()
logger.info("Successfully loaded with Qwen2VL specific classes")
except Exception as e1:
logger.warning(f"Failed with Qwen2VL classes: {e1}")
logger.info("Trying AutoProcessor and AutoModel fallback...")
try:
from transformers import AutoProcessor, AutoModel
processor = AutoProcessor.from_pretrained(
model_name,
trust_remote_code=True
)
# Configure padding for processor
if hasattr(processor, 'tokenizer'):
processor.tokenizer.padding_side = "left"
if processor.tokenizer.pad_token is None:
processor.tokenizer.pad_token = processor.tokenizer.eos_token
model = AutoModel.from_pretrained(
model_name,
torch_dtype=torch.float32,
device_map=None,
trust_remote_code=True,
low_cpu_mem_usage=True
).eval()
logger.info("Successfully loaded with Auto classes")
except Exception as e2:
logger.warning(f"Failed with Auto classes: {e2}")
logger.info("Trying generic transformers approach...")
# Last fallback - try loading as generic model
from transformers import AutoConfig, AutoTokenizer
import transformers
config = AutoConfig.from_pretrained(model_name, trust_remote_code=True)
logger.info(f"Model config type: {type(config)}")
# Try to find the right model class
if hasattr(transformers, 'Qwen2VLForConditionalGeneration'):
ModelClass = getattr(transformers, 'Qwen2VLForConditionalGeneration')
elif hasattr(transformers, 'AutoModelForVision2Seq'):
ModelClass = getattr(transformers, 'AutoModelForVision2Seq')
else:
raise Exception("No suitable model class found")
processor = AutoProcessor.from_pretrained(
model_name,
trust_remote_code=True
)
# Configure padding
if hasattr(processor, 'tokenizer'):
processor.tokenizer.padding_side = "left"
if processor.tokenizer.pad_token is None:
processor.tokenizer.pad_token = processor.tokenizer.eos_token
model = ModelClass.from_pretrained(
model_name,
config=config,
torch_dtype=torch.float32,
device_map=None,
trust_remote_code=True,
low_cpu_mem_usage=True
).eval()
# Verify processor and model are loaded
if processor is None or model is None:
raise Exception("Failed to load processor or model")
tokenizer = processor.tokenizer
logger.info("Model and processor loaded successfully!")
model_loaded = True
return True
except Exception as e:
logger.error(f"Error loading model: {e}")
model_loaded = False
return False
@asynccontextmanager
async def lifespan(app: FastAPI):
# Startup
logger.info("Starting up GUI-Actor API...")
await load_model()
yield
# Shutdown
logger.info("Shutting down GUI-Actor API...")
# Initialize FastAPI app with lifespan
app = FastAPI(
title="GUI-Actor API",
version="1.0.0",
lifespan=lifespan
)
class Base64Request(BaseModel):
image_base64: str
instruction: str
def extract_coordinates(text):
"""
Extract coordinates from model output text
"""
# Pattern untuk mencari koordinat dalam berbagai format
patterns = [
r'click\s*\(\s*(\d+(?:\.\d+)?)\s*,\s*(\d+(?:\.\d+)?)\s*\)', # click(x, y)
r'\[\s*(\d+(?:\.\d+)?)\s*,\s*(\d+(?:\.\d+)?)\s*\]', # [x, y]
r'(\d+(?:\.\d+)?)\s*,\s*(\d+(?:\.\d+)?)', # x, y
r'point:\s*\(\s*(\d+(?:\.\d+)?)\s*,\s*(\d+(?:\.\d+)?)\s*\)', # point: (x, y)
]
for pattern in patterns:
matches = re.findall(pattern, text.lower())
if matches:
try:
x, y = float(matches[0][0]), float(matches[0][1])
# Normalize jika koordinat > 1 (asumsi pixel coordinates)
if x > 1 or y > 1:
# Asumsi resolusi 1920x1080 untuk normalisasi
x = x / 1920 if x > 1 else x
y = y / 1080 if y > 1 else y
return [(x, y)]
except (ValueError, IndexError):
continue
# Default ke center jika tidak ditemukan
return [(0.5, 0.5)]
def cpu_inference(conversation, model, tokenizer, processor):
try:
# Apply chat template
prompt = processor.apply_chat_template(
conversation,
tokenize=False,
add_generation_prompt=True
)
image = conversation[1]["content"][0]["image"]
# FIXED: Process inputs dengan padding yang benar
inputs = processor(
text=[prompt], # Wrap dalam list untuk batch processing
images=[image], # Wrap dalam list untuk batch processing
return_tensors="pt",
padding=True, # Enable padding
truncation=True,
max_length=512
)
# FIXED: Pastikan semua tensor memiliki batch dimension yang konsisten
for key, value in inputs.items():
if isinstance(value, torch.Tensor):
logger.debug(f"Input {key} shape: {value.shape}")
# FIXED: Set pad_token_id jika belum ada
pad_token_id = tokenizer.pad_token_id
if pad_token_id is None:
pad_token_id = tokenizer.eos_token_id
if pad_token_id is None:
pad_token_id = 0 # Fallback
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=256,
do_sample=True,
temperature=0.3,
top_p=0.8,
pad_token_id=pad_token_id,
attention_mask=inputs.get('attention_mask', None) # FIXED: Explicit attention mask
)
# FIXED: Extract generated tokens correctly
input_length = inputs["input_ids"].shape[1]
generated_ids = outputs[0][input_length:]
response = tokenizer.decode(generated_ids, skip_special_tokens=True)
coordinates = extract_coordinates(response)
return {
"topk_points": coordinates,
"response": response.strip(),
"success": True
}
except Exception as e:
logger.error(f"Inference error: {e}")
# FIXED: More detailed error logging
import traceback
logger.error(f"Full traceback: {traceback.format_exc()}")
return {
"topk_points": [(0.5, 0.5)],
"response": f"Error during inference: {str(e)}",
"success": False
}
@app.get("/")
async def root():
return {
"message": "GUI-Actor API is running",
"status": "healthy",
"model_loaded": model_loaded,
"model_name": model_name
}
@app.post("/click/base64")
async def predict_click_base64(data: Base64Request):
if not model_loaded:
raise HTTPException(
status_code=503,
detail="Model not loaded properly"
)
try:
# Decode base64 to image
try:
# Handle data URL format
if "," in data.image_base64:
image_data = base64.b64decode(data.image_base64.split(",")[-1])
else:
image_data = base64.b64decode(data.image_base64)
except Exception as e:
raise HTTPException(status_code=400, detail=f"Invalid base64 image: {e}")
try:
pil_image = Image.open(BytesIO(image_data)).convert("RGB")
# FIXED: Log image dimensions for debugging
logger.debug(f"Image dimensions: {pil_image.size}")
except Exception as e:
raise HTTPException(status_code=400, detail=f"Invalid image format: {e}")
# FIXED: Improved conversation structure
conversation = [
{
"role": "system",
"content": [
{
"type": "text",
"text": "You are a GUI agent. You are given a task and a screenshot of the screen. You need to perform a series of pyautogui actions to complete the task. Please provide the click coordinates.",
}
]
},
{
"role": "user",
"content": [
{
"type": "image",
"image": pil_image,
},
{
"type": "text",
"text": data.instruction,
},
],
},
]
# Run inference
pred = cpu_inference(conversation, model, tokenizer, processor)
if not pred["success"]:
logger.warning(f"Inference failed: {pred['response']}")
px, py = pred["topk_points"][0]
return JSONResponse(content={
"x": round(px, 4),
"y": round(py, 4),
"response": pred["response"],
"success": pred["success"]
})
except HTTPException:
raise
except Exception as e:
logger.error(f"Prediction error: {e}")
import traceback
logger.error(f"Full traceback: {traceback.format_exc()}")
raise HTTPException(
status_code=500,
detail=f"Internal server error: {str(e)}"
)
@app.get("/health")
async def health_check():
return {
"status": "healthy" if model_loaded else "unhealthy",
"model": model_name,
"device": "cpu",
"torch_dtype": "float32",
"model_loaded": model_loaded
}
@app.get("/debug")
async def debug_info():
"""Debug endpoint to check model loading status"""
import transformers
available_classes = [attr for attr in dir(transformers) if 'Qwen' in attr or 'VL' in attr]
debug_info = {
"model_loaded": model_loaded,
"processor_type": type(processor).__name__ if processor else None,
"model_type": type(model).__name__ if model else None,
"available_qwen_classes": available_classes,
"transformers_version": transformers.__version__
}
# FIXED: Add tokenizer info for debugging
if processor and hasattr(processor, 'tokenizer'):
debug_info.update({
"tokenizer_type": type(processor.tokenizer).__name__,
"pad_token": processor.tokenizer.pad_token,
"pad_token_id": processor.tokenizer.pad_token_id,
"eos_token": processor.tokenizer.eos_token,
"eos_token_id": processor.tokenizer.eos_token_id,
"padding_side": processor.tokenizer.padding_side
})
return debug_info