File size: 7,797 Bytes
f1199d3
2cf117f
55b2cb1
2cf117f
 
 
55b2cb1
0b96209
f1199d3
 
 
2cf117f
f1199d3
 
 
2cf117f
1c943af
 
 
 
0b96209
f1199d3
0b96209
f1199d3
1c943af
f1199d3
1c943af
 
f1199d3
1c943af
f1199d3
 
1c943af
f1199d3
 
 
 
 
 
 
1c943af
f1199d3
 
 
 
 
1c943af
f1199d3
 
 
 
1c943af
 
f1199d3
 
1c943af
 
 
f1199d3
 
1c943af
e670b79
f1199d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2cf117f
55b2cb1
 
 
2cf117f
0b96209
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c943af
0b96209
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1199d3
0b96209
 
 
 
 
 
1c943af
 
 
 
 
 
 
 
55b2cb1
 
1c943af
f1199d3
 
 
1c943af
 
e670b79
 
f1199d3
 
 
 
 
 
 
 
 
 
 
 
 
e670b79
 
 
 
 
 
 
0b96209
e670b79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b96209
 
e670b79
 
 
 
 
0b96209
 
e670b79
 
f1199d3
 
e670b79
f1199d3
 
 
 
e670b79
 
 
 
 
f1199d3
0b96209
 
1c943af
 
e670b79
2cf117f
e670b79
 
 
 
 
 
1c943af
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
from fastapi import FastAPI, Form, HTTPException
from fastapi.responses import JSONResponse
from pydantic import BaseModel
from PIL import Image
from io import BytesIO
import base64
import torch
import re
import logging
import asyncio
from contextlib import asynccontextmanager

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Initialize global variables
model = None
processor = None
tokenizer = None
model_name = "microsoft/GUI-Actor-2B-Qwen2-VL"
model_loaded = False

async def load_model():
    """Load model with proper error handling"""
    global model, processor, tokenizer, model_loaded
    
    try:
        logger.info("Starting model loading...")
        
        # Import required modules
        from transformers import AutoProcessor, AutoModelForCausalLM
        
        logger.info("Loading processor...")
        # Use AutoProcessor for better compatibility
        processor = AutoProcessor.from_pretrained(
            model_name, 
            trust_remote_code=True
        )
        logger.info("Processor loaded successfully")
        
        tokenizer = processor.tokenizer
        
        logger.info("Loading model...")
        # Use AutoModelForCausalLM for better compatibility
        model = AutoModelForCausalLM.from_pretrained(
            model_name,
            torch_dtype=torch.float32,
            device_map=None,  # CPU only
            trust_remote_code=True,
            low_cpu_mem_usage=True  # For better memory management
        ).eval()
        
        logger.info("Model loaded successfully!")
        model_loaded = True
        return True
        
    except Exception as e:
        logger.error(f"Error loading model: {e}")
        model_loaded = False
        return False

@asynccontextmanager
async def lifespan(app: FastAPI):
    # Startup
    logger.info("Starting up GUI-Actor API...")
    await load_model()
    yield
    # Shutdown
    logger.info("Shutting down GUI-Actor API...")

# Initialize FastAPI app with lifespan
app = FastAPI(
    title="GUI-Actor API", 
    version="1.0.0",
    lifespan=lifespan
)

class Base64Request(BaseModel):
    image_base64: str
    instruction: str

def extract_coordinates(text):
    """
    Extract coordinates from model output text
    """
    # Pattern untuk mencari koordinat dalam berbagai format
    patterns = [
        r'click\s*\(\s*(\d+(?:\.\d+)?)\s*,\s*(\d+(?:\.\d+)?)\s*\)',  # click(x, y)
        r'\[\s*(\d+(?:\.\d+)?)\s*,\s*(\d+(?:\.\d+)?)\s*\]',          # [x, y]
        r'(\d+(?:\.\d+)?)\s*,\s*(\d+(?:\.\d+)?)',                    # x, y
        r'point:\s*\(\s*(\d+(?:\.\d+)?)\s*,\s*(\d+(?:\.\d+)?)\s*\)', # point: (x, y)
    ]
    
    for pattern in patterns:
        matches = re.findall(pattern, text.lower())
        if matches:
            try:
                x, y = float(matches[0][0]), float(matches[0][1])
                # Normalize jika koordinat > 1 (asumsi pixel coordinates)
                if x > 1 or y > 1:
                    # Asumsi resolusi 1920x1080 untuk normalisasi
                    x = x / 1920 if x > 1 else x
                    y = y / 1080 if y > 1 else y
                return [(x, y)]
            except (ValueError, IndexError):
                continue
    
    # Default ke center jika tidak ditemukan
    return [(0.5, 0.5)]

def cpu_inference(conversation, model, tokenizer, processor):
    """
    Inference function untuk CPU
    """
    try:
        # Apply chat template
        text = processor.apply_chat_template(
            conversation, 
            tokenize=False, 
            add_generation_prompt=True
        )
        
        # Get image from conversation
        image = conversation[1]["content"][0]["image"]
        
        # Process inputs
        inputs = processor(
            text=[text], 
            images=[image], 
            return_tensors="pt"
        )
        
        # Generate response
        with torch.no_grad():
            outputs = model.generate(
                **inputs,
                max_new_tokens=256,
                do_sample=True,
                temperature=0.3,
                top_p=0.8,
                pad_token_id=tokenizer.eos_token_id
            )
        
        # Decode response
        generated_ids = outputs[0][inputs["input_ids"].shape[1]:]
        response = tokenizer.decode(generated_ids, skip_special_tokens=True)
        
        # Extract coordinates
        coordinates = extract_coordinates(response)
        
        return {
            "topk_points": coordinates,
            "response": response,
            "success": True
        }
        
    except Exception as e:
        logger.error(f"Inference error: {e}")
        return {
            "topk_points": [(0.5, 0.5)],
            "response": f"Error during inference: {str(e)}",
            "success": False
        }

@app.get("/")
async def root():
    return {
        "message": "GUI-Actor API is running", 
        "status": "healthy",
        "model_loaded": model_loaded
    }

@app.post("/click/base64")
async def predict_click_base64(data: Base64Request):
    if not model_loaded:
        raise HTTPException(
            status_code=503,
            detail="Model not loaded properly"
        )
    
    try:
        # Decode base64 to image
        try:
            # Handle data URL format
            if "," in data.image_base64:
                image_data = base64.b64decode(data.image_base64.split(",")[-1])
            else:
                image_data = base64.b64decode(data.image_base64)
        except Exception as e:
            raise HTTPException(status_code=400, detail=f"Invalid base64 image: {e}")
        
        try:
            pil_image = Image.open(BytesIO(image_data)).convert("RGB")
        except Exception as e:
            raise HTTPException(status_code=400, detail=f"Invalid image format: {e}")

        conversation = [
            {
                "role": "system",
                "content": [
                    {
                        "type": "text",
                        "text": "You are a GUI agent. You are given a task and a screenshot of the screen. You need to perform a series of pyautogui actions to complete the task. Please provide the click coordinates.",
                    }
                ]
            },
            {
                "role": "user",
                "content": [
                    {
                        "type": "image",
                        "image": pil_image,
                    },
                    {
                        "type": "text",
                        "text": data.instruction,
                    },
                ],
            },
        ]

        # Run inference
        pred = cpu_inference(conversation, model, tokenizer, processor)
        px, py = pred["topk_points"][0]
        
        return JSONResponse(content={
            "x": round(px, 4), 
            "y": round(py, 4),
            "response": pred["response"],
            "success": pred["success"]
        })
        
    except HTTPException:
        raise
    except Exception as e:
        logger.error(f"Prediction error: {e}")
        raise HTTPException(
            status_code=500,
            detail=f"Internal server error: {str(e)}"
        )

@app.get("/health")
async def health_check():
    return {
        "status": "healthy" if model_loaded else "unhealthy",
        "model": model_name,
        "device": "cpu",
        "torch_dtype": "float32",
        "model_loaded": model_loaded
    }

@app.post("/click/form")
async def predict_click_form(
    image_base64: str = Form(...),
    instruction: str = Form(...)
):
    data = Base64Request(image_base64=image_base64, instruction=instruction)
    return await predict_click_base64(data)