Spaces:
Sleeping
Sleeping
File size: 7,797 Bytes
f1199d3 2cf117f 55b2cb1 2cf117f 55b2cb1 0b96209 f1199d3 2cf117f f1199d3 2cf117f 1c943af 0b96209 f1199d3 0b96209 f1199d3 1c943af f1199d3 1c943af f1199d3 1c943af f1199d3 1c943af f1199d3 1c943af f1199d3 1c943af f1199d3 1c943af f1199d3 1c943af f1199d3 1c943af e670b79 f1199d3 2cf117f 55b2cb1 2cf117f 0b96209 1c943af 0b96209 f1199d3 0b96209 1c943af 55b2cb1 1c943af f1199d3 1c943af e670b79 f1199d3 e670b79 0b96209 e670b79 0b96209 e670b79 0b96209 e670b79 f1199d3 e670b79 f1199d3 e670b79 f1199d3 0b96209 1c943af e670b79 2cf117f e670b79 1c943af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 |
from fastapi import FastAPI, Form, HTTPException
from fastapi.responses import JSONResponse
from pydantic import BaseModel
from PIL import Image
from io import BytesIO
import base64
import torch
import re
import logging
import asyncio
from contextlib import asynccontextmanager
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Initialize global variables
model = None
processor = None
tokenizer = None
model_name = "microsoft/GUI-Actor-2B-Qwen2-VL"
model_loaded = False
async def load_model():
"""Load model with proper error handling"""
global model, processor, tokenizer, model_loaded
try:
logger.info("Starting model loading...")
# Import required modules
from transformers import AutoProcessor, AutoModelForCausalLM
logger.info("Loading processor...")
# Use AutoProcessor for better compatibility
processor = AutoProcessor.from_pretrained(
model_name,
trust_remote_code=True
)
logger.info("Processor loaded successfully")
tokenizer = processor.tokenizer
logger.info("Loading model...")
# Use AutoModelForCausalLM for better compatibility
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float32,
device_map=None, # CPU only
trust_remote_code=True,
low_cpu_mem_usage=True # For better memory management
).eval()
logger.info("Model loaded successfully!")
model_loaded = True
return True
except Exception as e:
logger.error(f"Error loading model: {e}")
model_loaded = False
return False
@asynccontextmanager
async def lifespan(app: FastAPI):
# Startup
logger.info("Starting up GUI-Actor API...")
await load_model()
yield
# Shutdown
logger.info("Shutting down GUI-Actor API...")
# Initialize FastAPI app with lifespan
app = FastAPI(
title="GUI-Actor API",
version="1.0.0",
lifespan=lifespan
)
class Base64Request(BaseModel):
image_base64: str
instruction: str
def extract_coordinates(text):
"""
Extract coordinates from model output text
"""
# Pattern untuk mencari koordinat dalam berbagai format
patterns = [
r'click\s*\(\s*(\d+(?:\.\d+)?)\s*,\s*(\d+(?:\.\d+)?)\s*\)', # click(x, y)
r'\[\s*(\d+(?:\.\d+)?)\s*,\s*(\d+(?:\.\d+)?)\s*\]', # [x, y]
r'(\d+(?:\.\d+)?)\s*,\s*(\d+(?:\.\d+)?)', # x, y
r'point:\s*\(\s*(\d+(?:\.\d+)?)\s*,\s*(\d+(?:\.\d+)?)\s*\)', # point: (x, y)
]
for pattern in patterns:
matches = re.findall(pattern, text.lower())
if matches:
try:
x, y = float(matches[0][0]), float(matches[0][1])
# Normalize jika koordinat > 1 (asumsi pixel coordinates)
if x > 1 or y > 1:
# Asumsi resolusi 1920x1080 untuk normalisasi
x = x / 1920 if x > 1 else x
y = y / 1080 if y > 1 else y
return [(x, y)]
except (ValueError, IndexError):
continue
# Default ke center jika tidak ditemukan
return [(0.5, 0.5)]
def cpu_inference(conversation, model, tokenizer, processor):
"""
Inference function untuk CPU
"""
try:
# Apply chat template
text = processor.apply_chat_template(
conversation,
tokenize=False,
add_generation_prompt=True
)
# Get image from conversation
image = conversation[1]["content"][0]["image"]
# Process inputs
inputs = processor(
text=[text],
images=[image],
return_tensors="pt"
)
# Generate response
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=256,
do_sample=True,
temperature=0.3,
top_p=0.8,
pad_token_id=tokenizer.eos_token_id
)
# Decode response
generated_ids = outputs[0][inputs["input_ids"].shape[1]:]
response = tokenizer.decode(generated_ids, skip_special_tokens=True)
# Extract coordinates
coordinates = extract_coordinates(response)
return {
"topk_points": coordinates,
"response": response,
"success": True
}
except Exception as e:
logger.error(f"Inference error: {e}")
return {
"topk_points": [(0.5, 0.5)],
"response": f"Error during inference: {str(e)}",
"success": False
}
@app.get("/")
async def root():
return {
"message": "GUI-Actor API is running",
"status": "healthy",
"model_loaded": model_loaded
}
@app.post("/click/base64")
async def predict_click_base64(data: Base64Request):
if not model_loaded:
raise HTTPException(
status_code=503,
detail="Model not loaded properly"
)
try:
# Decode base64 to image
try:
# Handle data URL format
if "," in data.image_base64:
image_data = base64.b64decode(data.image_base64.split(",")[-1])
else:
image_data = base64.b64decode(data.image_base64)
except Exception as e:
raise HTTPException(status_code=400, detail=f"Invalid base64 image: {e}")
try:
pil_image = Image.open(BytesIO(image_data)).convert("RGB")
except Exception as e:
raise HTTPException(status_code=400, detail=f"Invalid image format: {e}")
conversation = [
{
"role": "system",
"content": [
{
"type": "text",
"text": "You are a GUI agent. You are given a task and a screenshot of the screen. You need to perform a series of pyautogui actions to complete the task. Please provide the click coordinates.",
}
]
},
{
"role": "user",
"content": [
{
"type": "image",
"image": pil_image,
},
{
"type": "text",
"text": data.instruction,
},
],
},
]
# Run inference
pred = cpu_inference(conversation, model, tokenizer, processor)
px, py = pred["topk_points"][0]
return JSONResponse(content={
"x": round(px, 4),
"y": round(py, 4),
"response": pred["response"],
"success": pred["success"]
})
except HTTPException:
raise
except Exception as e:
logger.error(f"Prediction error: {e}")
raise HTTPException(
status_code=500,
detail=f"Internal server error: {str(e)}"
)
@app.get("/health")
async def health_check():
return {
"status": "healthy" if model_loaded else "unhealthy",
"model": model_name,
"device": "cpu",
"torch_dtype": "float32",
"model_loaded": model_loaded
}
@app.post("/click/form")
async def predict_click_form(
image_base64: str = Form(...),
instruction: str = Form(...)
):
data = Base64Request(image_base64=image_base64, instruction=instruction)
return await predict_click_base64(data) |