Initial Space setup
Browse files
app.py
CHANGED
@@ -2,37 +2,71 @@ import gradio as gr
|
|
2 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
|
3 |
from peft import PeftModel
|
4 |
|
5 |
-
# 1)
|
6 |
BASE_MODEL = "facebook/blenderbot-400M-distill"
|
7 |
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL)
|
8 |
base_model = AutoModelForSeq2SeqLM.from_pretrained(BASE_MODEL)
|
9 |
|
10 |
-
# 2)
|
11 |
ADAPTER_REPO = "abinashnp/bayedger-chatbot"
|
12 |
model = PeftModel.from_pretrained(base_model, ADAPTER_REPO)
|
13 |
|
14 |
-
# 3)
|
15 |
chatbot = pipeline(
|
16 |
"text2text-generation",
|
17 |
model=model,
|
18 |
tokenizer=tokenizer,
|
19 |
-
device_map="auto"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
)
|
21 |
|
22 |
def respond(query):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
out = chatbot(
|
24 |
-
|
25 |
-
max_new_tokens=
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
)[0]["generated_text"]
|
31 |
-
return out
|
32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
with gr.Blocks() as demo:
|
34 |
-
gr.Markdown("# 🤖
|
35 |
-
txt = gr.Textbox(
|
36 |
out = gr.Textbox(label="Answer")
|
37 |
txt.submit(respond, txt, out)
|
38 |
|
|
|
2 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
|
3 |
from peft import PeftModel
|
4 |
|
5 |
+
# 1) Base model & tokenizer
|
6 |
BASE_MODEL = "facebook/blenderbot-400M-distill"
|
7 |
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL)
|
8 |
base_model = AutoModelForSeq2SeqLM.from_pretrained(BASE_MODEL)
|
9 |
|
10 |
+
# 2) Attach your LoRA adapter
|
11 |
ADAPTER_REPO = "abinashnp/bayedger-chatbot"
|
12 |
model = PeftModel.from_pretrained(base_model, ADAPTER_REPO)
|
13 |
|
14 |
+
# 3) Build the text2text pipeline (no explicit device arg)
|
15 |
chatbot = pipeline(
|
16 |
"text2text-generation",
|
17 |
model=model,
|
18 |
tokenizer=tokenizer,
|
19 |
+
# device_map="auto" # only if you use Accelerate; otherwise remove
|
20 |
+
)
|
21 |
+
|
22 |
+
# 4) System prompt (context) that always precedes user questions
|
23 |
+
SYSTEM_PROMPT = (
|
24 |
+
"You are BayEdger’s AI assistant. You only answer FAQs about BayEdger’s "
|
25 |
+
"services, pricing, and contact info. If you don’t know the answer, "
|
26 |
+
"you must say exactly:\n"
|
27 |
+
'"Sorry, I don’t have that info—please contact [email protected]."\n\n'
|
28 |
+
"Here is what you should know about BayEdger:\n"
|
29 |
+
"- AI‐powered websites and automation\n"
|
30 |
+
"- Chatbots, email agents, process automation, analytics, content gen\n"
|
31 |
+
"- Clear pricing tiers: Basic site ($400), Chatbot ($750+50/mo), Email ($1k+100/mo), etc.\n"
|
32 |
+
"- Starter/Growth/Premium bundles\n"
|
33 |
+
"- Contact: [email protected], +1‐234‐559‐87994, 13 Madison St, NY\n\n"
|
34 |
)
|
35 |
|
36 |
def respond(query):
|
37 |
+
# 5) Compose full prompt
|
38 |
+
prompt = (
|
39 |
+
SYSTEM_PROMPT
|
40 |
+
f"question: {query}\n"
|
41 |
+
"answer:"
|
42 |
+
)
|
43 |
+
|
44 |
+
# 6) Generate
|
45 |
out = chatbot(
|
46 |
+
prompt,
|
47 |
+
max_new_tokens=128,
|
48 |
+
do_sample=False,
|
49 |
+
num_beams=2,
|
50 |
+
early_stopping=True,
|
51 |
+
pad_token_id=tokenizer.eos_token_id
|
52 |
)[0]["generated_text"]
|
|
|
53 |
|
54 |
+
# 7) Strip off everything up through our "answer:" token
|
55 |
+
if "answer:" in out:
|
56 |
+
reply = out.split("answer:", 1)[1].strip()
|
57 |
+
else:
|
58 |
+
reply = out.strip()
|
59 |
+
|
60 |
+
# 8) Fallback: if the model didn’t produce anything substantial
|
61 |
+
if len(reply) < 15 or "don't know" in reply.lower() or "sorry" in reply.lower():
|
62 |
+
return "Sorry, I don’t have that info—please contact [email protected]."
|
63 |
+
|
64 |
+
return reply
|
65 |
+
|
66 |
+
# 9) Gradio UI
|
67 |
with gr.Blocks() as demo:
|
68 |
+
gr.Markdown("# 🤖 BayEdger FAQ Chatbot")
|
69 |
+
txt = gr.Textbox(placeholder="Ask me about BayEdger…", label="Your question")
|
70 |
out = gr.Textbox(label="Answer")
|
71 |
txt.submit(respond, txt, out)
|
72 |
|