Initial Space setup
Browse files
app.py
CHANGED
@@ -2,71 +2,37 @@ import gradio as gr
|
|
2 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
|
3 |
from peft import PeftModel
|
4 |
|
5 |
-
# 1)
|
6 |
BASE_MODEL = "facebook/blenderbot-400M-distill"
|
7 |
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL)
|
8 |
base_model = AutoModelForSeq2SeqLM.from_pretrained(BASE_MODEL)
|
9 |
|
10 |
-
# 2)
|
11 |
ADAPTER_REPO = "abinashnp/bayedger-chatbot"
|
12 |
model = PeftModel.from_pretrained(base_model, ADAPTER_REPO)
|
13 |
|
14 |
-
# 3)
|
15 |
chatbot = pipeline(
|
16 |
"text2text-generation",
|
17 |
model=model,
|
18 |
tokenizer=tokenizer,
|
19 |
-
|
20 |
-
)
|
21 |
-
|
22 |
-
# 4) System prompt (context) that always precedes user questions
|
23 |
-
SYSTEM_PROMPT = (
|
24 |
-
"You are BayEdger’s AI assistant. You only answer FAQs about BayEdger’s "
|
25 |
-
"services, pricing, and contact info. If you don’t know the answer, "
|
26 |
-
"you must say exactly:\n"
|
27 |
-
'"Sorry, I don’t have that info—please contact [email protected]."\n\n'
|
28 |
-
"Here is what you should know about BayEdger:\n"
|
29 |
-
"- AI‐powered websites and automation\n"
|
30 |
-
"- Chatbots, email agents, process automation, analytics, content gen\n"
|
31 |
-
"- Clear pricing tiers: Basic site ($400), Chatbot ($750+50/mo), Email ($1k+100/mo), etc.\n"
|
32 |
-
"- Starter/Growth/Premium bundles\n"
|
33 |
-
"- Contact: [email protected], +1‐234‐559‐87994, 13 Madison St, NY\n\n"
|
34 |
)
|
35 |
|
36 |
def respond(query):
|
37 |
-
# Build the prompt correctly by concatenating
|
38 |
-
prompt = (
|
39 |
-
SYSTEM_PROMPT
|
40 |
-
+ f"question: {query}\n"
|
41 |
-
+ "answer:"
|
42 |
-
)
|
43 |
-
|
44 |
out = chatbot(
|
45 |
-
|
46 |
-
max_new_tokens=
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
)[0]["generated_text"]
|
|
|
52 |
|
53 |
-
# Strip off the “answer:” prefix
|
54 |
-
if "answer:" in out:
|
55 |
-
reply = out.split("answer:", 1)[1].strip()
|
56 |
-
else:
|
57 |
-
reply = out.strip()
|
58 |
-
|
59 |
-
# Fallback for unknowns
|
60 |
-
if len(reply) < 15 or "don't know" in reply.lower() or "sorry" in reply.lower():
|
61 |
-
return "Sorry, I don’t have that info—please contact [email protected]."
|
62 |
-
|
63 |
-
return reply
|
64 |
-
|
65 |
-
|
66 |
-
# 9) Gradio UI
|
67 |
with gr.Blocks() as demo:
|
68 |
-
gr.Markdown("# 🤖
|
69 |
-
txt = gr.Textbox(
|
70 |
out = gr.Textbox(label="Answer")
|
71 |
txt.submit(respond, txt, out)
|
72 |
|
|
|
2 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
|
3 |
from peft import PeftModel
|
4 |
|
5 |
+
# 1) Load the original base model & tokenizer
|
6 |
BASE_MODEL = "facebook/blenderbot-400M-distill"
|
7 |
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL)
|
8 |
base_model = AutoModelForSeq2SeqLM.from_pretrained(BASE_MODEL)
|
9 |
|
10 |
+
# 2) Load your fine-tuned LoRA adapter on top
|
11 |
ADAPTER_REPO = "abinashnp/bayedger-chatbot"
|
12 |
model = PeftModel.from_pretrained(base_model, ADAPTER_REPO)
|
13 |
|
14 |
+
# 3) Wrap that in a text2text pipeline
|
15 |
chatbot = pipeline(
|
16 |
"text2text-generation",
|
17 |
model=model,
|
18 |
tokenizer=tokenizer,
|
19 |
+
device_map="auto", # leave out device arg when using accelerate device_map
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
)
|
21 |
|
22 |
def respond(query):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
out = chatbot(
|
24 |
+
f"question: {query} answer:",
|
25 |
+
max_new_tokens=150,
|
26 |
+
temperature=1.0,
|
27 |
+
top_p=0.9,
|
28 |
+
repetition_penalty=1.1,
|
29 |
+
num_beams=1
|
30 |
)[0]["generated_text"]
|
31 |
+
return out
|
32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
with gr.Blocks() as demo:
|
34 |
+
gr.Markdown("# 🤖 Bayedger FAQ Chatbot")
|
35 |
+
txt = gr.Textbox(label="Ask me anything")
|
36 |
out = gr.Textbox(label="Answer")
|
37 |
txt.submit(respond, txt, out)
|
38 |
|