import gradio as gr import utils import transcribe with gr.Blocks(theme="base") as demo: gr.Markdown("

🔊 Transcription Delight

") gr.Markdown("### Step 1: Generate Raw Transcript") with gr.Row(): with gr.Column(): source = gr.Radio(label="Source type", choices=[("Audio", "audio"), ("Video", "video"), ("YouTube URL", "youtube")], value="audio") @gr.render(inputs=source) def show_source(s): if s == "audio": source_component = gr.Audio(type="filepath") elif s == "video": source_component = gr.Video() else: source_component = gr.Textbox(placeholder="https://www.youtube.com/watch?v=44vi31hehw4") preview = gr.HTML(label="Video preview") source_component.change(utils.convert_to_embed_url, source_component, preview) # transcribe_btn.click( # lambda : gr.Tabs(selected="result"), # None, # tabs # ).then( # utils.generate_audio, # [source, source_component], # [download_audio], # show_progress="minimal" # ).then( # transcribe.transcribe, # [download_audio], # [preliminary_transcript], # show_progress="hidden" # ) with gr.Column(): transcribe_btn = gr.Button("Transcribe audio 📜", variant="primary") preliminary_transcript = gr.Textbox(info="Raw transcript", lines=10, show_copy_button=True, show_label=False, interactive=False) source.change(utils.transcribe_button, source, transcribe_btn) gr.Markdown("### Step 2: Clean with an LLM") with gr.Row(): with gr.Column(): cleanup_options = gr.CheckboxGroup(label="Cleanup Transcript with LLM", choices=["Remove typos", "Separate into paragraphs"]) llm_prompt = gr.Textbox(label="LLM Prompt", visible=False, lines=3) cleanup_options.change( utils.generate_prompt, cleanup_options, llm_prompt ) with gr.Column(): clean_btn = gr.Button("Clean transcript ✨", variant="primary", interactive=False) gr.Markdown("*Final transcript will appear here*") # with gr.Tab("Result", id="result"): # with gr.Row(): # with gr.Column(): # download_audio = gr.DownloadButton("Downloading Audio File (please wait...)", variant="primary", interactive=False, size="sm") # preliminary_transcript = gr.Textbox(info="Raw transcript", lines=10, show_copy_button=True, show_label=False, interactive=False) # with gr.Column(): demo.launch()