Spaces:
Running
Running
File size: 15,781 Bytes
a3a2452 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 |
import os
import shutil
from typing import Any
import gradio as gr
import huggingface_hub as hf
import pandas as pd
HfApi = hf.HfApi()
try:
from trackio.sqlite_storage import SQLiteStorage
from trackio.utils import RESERVED_KEYS, TRACKIO_LOGO_PATH
except: # noqa: E722
from sqlite_storage import SQLiteStorage
from utils import RESERVED_KEYS, TRACKIO_LOGO_PATH
css = """
#run-cb .wrap {
gap: 2px;
}
#run-cb .wrap label {
line-height: 1;
padding: 6px;
}
"""
COLOR_PALETTE = [
"#3B82F6",
"#EF4444",
"#10B981",
"#F59E0B",
"#8B5CF6",
"#EC4899",
"#06B6D4",
"#84CC16",
"#F97316",
"#6366F1",
]
def get_color_mapping(runs: list[str], smoothing: bool) -> dict[str, str]:
"""Generate color mapping for runs, with transparency for original data when smoothing is enabled."""
color_map = {}
for i, run in enumerate(runs):
base_color = COLOR_PALETTE[i % len(COLOR_PALETTE)]
if smoothing:
color_map[f"{run}_smoothed"] = base_color
color_map[f"{run}_original"] = base_color + "4D"
else:
color_map[run] = base_color
return color_map
def get_projects(request: gr.Request):
dataset_id = os.environ.get("TRACKIO_DATASET_ID")
projects = SQLiteStorage.get_projects()
if project := request.query_params.get("project"):
interactive = False
else:
interactive = True
project = projects[0] if projects else None
return gr.Dropdown(
label="Project",
choices=projects,
value=project,
allow_custom_value=True,
interactive=interactive,
info=f"↻ Synced to <a href='https://huggingface.co/datasets/{dataset_id}' target='_blank'>{dataset_id}</a> every 5 min"
if dataset_id
else None,
)
def get_runs(project) -> list[str]:
if not project:
return []
return SQLiteStorage.get_runs(project)
def get_available_metrics(project: str, runs: list[str]) -> list[str]:
"""Get all available metrics across all runs for x-axis selection."""
if not project or not runs:
return ["step", "time"]
all_metrics = set()
for run in runs:
metrics = SQLiteStorage.get_metrics(project, run)
if metrics:
df = pd.DataFrame(metrics)
numeric_cols = df.select_dtypes(include="number").columns
numeric_cols = [c for c in numeric_cols if c not in RESERVED_KEYS]
all_metrics.update(numeric_cols)
# Always include step and time as options
all_metrics.add("step")
all_metrics.add("time")
# Sort metrics by prefix
sorted_metrics = sort_metrics_by_prefix(list(all_metrics))
# Put step and time at the beginning
result = ["step", "time"]
for metric in sorted_metrics:
if metric not in result:
result.append(metric)
return result
def load_run_data(project: str | None, run: str | None, smoothing: bool, x_axis: str):
if not project or not run:
return None
metrics = SQLiteStorage.get_metrics(project, run)
if not metrics:
return None
df = pd.DataFrame(metrics)
if "step" not in df.columns:
df["step"] = range(len(df))
if x_axis == "time" and "timestamp" in df.columns:
df["timestamp"] = pd.to_datetime(df["timestamp"])
first_timestamp = df["timestamp"].min()
df["time"] = (df["timestamp"] - first_timestamp).dt.total_seconds()
x_column = "time"
elif x_axis == "step":
x_column = "step"
else:
x_column = x_axis
if smoothing:
numeric_cols = df.select_dtypes(include="number").columns
numeric_cols = [c for c in numeric_cols if c not in RESERVED_KEYS]
df_original = df.copy()
df_original["run"] = f"{run}_original"
df_original["data_type"] = "original"
df_smoothed = df.copy()
window_size = max(3, min(10, len(df) // 10)) # Adaptive window size
df_smoothed[numeric_cols] = (
df_smoothed[numeric_cols]
.rolling(window=window_size, center=True, min_periods=1)
.mean()
)
df_smoothed["run"] = f"{run}_smoothed"
df_smoothed["data_type"] = "smoothed"
combined_df = pd.concat([df_original, df_smoothed], ignore_index=True)
combined_df["x_axis"] = x_column
return combined_df
else:
df["run"] = run
df["data_type"] = "original"
df["x_axis"] = x_column
return df
def update_runs(project, filter_text, user_interacted_with_runs=False):
if project is None:
runs = []
num_runs = 0
else:
runs = get_runs(project)
num_runs = len(runs)
if filter_text:
runs = [r for r in runs if filter_text in r]
if not user_interacted_with_runs:
return gr.CheckboxGroup(choices=runs, value=runs), gr.Textbox(
label=f"Runs ({num_runs})"
)
else:
return gr.CheckboxGroup(choices=runs), gr.Textbox(label=f"Runs ({num_runs})")
def filter_runs(project, filter_text):
runs = get_runs(project)
runs = [r for r in runs if filter_text in r]
return gr.CheckboxGroup(choices=runs, value=runs)
def update_x_axis_choices(project, runs):
"""Update x-axis dropdown choices based on available metrics."""
available_metrics = get_available_metrics(project, runs)
return gr.Dropdown(
label="X-axis",
choices=available_metrics,
value="step",
)
def toggle_timer(cb_value):
if cb_value:
return gr.Timer(active=True)
else:
return gr.Timer(active=False)
def check_auth(hf_token: str | None) -> None:
if os.getenv("SYSTEM") == "spaces": # if we are running in Spaces
# check auth token passed in
if hf_token is None:
raise PermissionError(
"Expected a HF_TOKEN to be provided when logging to a Space"
)
who = HfApi.whoami(hf_token)
access_token = who["auth"]["accessToken"]
owner_name = os.getenv("SPACE_AUTHOR_NAME")
repo_name = os.getenv("SPACE_REPO_NAME")
# make sure the token user is either the author of the space,
# or is a member of an org that is the author.
orgs = [o["name"] for o in who["orgs"]]
if owner_name != who["name"] and owner_name not in orgs:
raise PermissionError(
"Expected the provided hf_token to be the user owner of the space, or be a member of the org owner of the space"
)
# reject fine-grained tokens without specific repo access
if access_token["role"] == "fineGrained":
matched = False
for item in access_token["fineGrained"]["scoped"]:
if (
item["entity"]["type"] == "space"
and item["entity"]["name"] == f"{owner_name}/{repo_name}"
and "repo.write" in item["permissions"]
):
matched = True
break
if (
item["entity"]["type"] == "user"
and item["entity"]["name"] == owner_name
and "repo.write" in item["permissions"]
):
matched = True
break
if not matched:
raise PermissionError(
"Expected the provided hf_token with fine grained permissions to provide write access to the space"
)
# reject read-only tokens
elif access_token["role"] != "write":
raise PermissionError(
"Expected the provided hf_token to provide write permissions"
)
def upload_db_to_space(
project: str, uploaded_db: gr.FileData, hf_token: str | None
) -> None:
check_auth(hf_token)
db_project_path = SQLiteStorage.get_project_db_path(project)
if os.path.exists(db_project_path):
raise gr.Error(
f"Trackio database file already exists for project {project}, cannot overwrite."
)
os.makedirs(os.path.dirname(db_project_path), exist_ok=True)
shutil.copy(uploaded_db["path"], db_project_path)
def log(
project: str,
run: str,
metrics: dict[str, Any],
hf_token: str | None,
) -> None:
check_auth(hf_token)
SQLiteStorage.log(project=project, run=run, metrics=metrics)
def sort_metrics_by_prefix(metrics: list[str]) -> list[str]:
"""
Sort metrics by grouping prefixes together.
Metrics without prefixes come first, then grouped by prefix.
Example:
Input: ["train/loss", "loss", "train/acc", "val/loss"]
Output: ["loss", "train/acc", "train/loss", "val/loss"]
"""
no_prefix = []
with_prefix = []
for metric in metrics:
if "/" in metric:
with_prefix.append(metric)
else:
no_prefix.append(metric)
no_prefix.sort()
prefix_groups = {}
for metric in with_prefix:
prefix = metric.split("/")[0]
if prefix not in prefix_groups:
prefix_groups[prefix] = []
prefix_groups[prefix].append(metric)
sorted_with_prefix = []
for prefix in sorted(prefix_groups.keys()):
sorted_with_prefix.extend(sorted(prefix_groups[prefix]))
return no_prefix + sorted_with_prefix
def configure(request: gr.Request):
sidebar_param = request.query_params.get("sidebar")
match sidebar_param:
case "collapsed":
sidebar = gr.Sidebar(open=False, visible=True)
case "hidden":
sidebar = gr.Sidebar(visible=False)
case _:
sidebar = gr.Sidebar(visible=True)
if metrics := request.query_params.get("metrics"):
return metrics.split(","), sidebar
else:
return [], sidebar
with gr.Blocks(theme="citrus", title="Trackio Dashboard", css=css) as demo:
with gr.Sidebar(visible=False) as sidebar:
gr.Markdown(
f"<div style='display: flex; align-items: center; gap: 8px;'><img src='/gradio_api/file={TRACKIO_LOGO_PATH}' width='32' height='32'><span style='font-size: 2em; font-weight: bold;'>Trackio</span></div>"
)
project_dd = gr.Dropdown(label="Project", allow_custom_value=True)
run_tb = gr.Textbox(label="Runs", placeholder="Type to filter...")
run_cb = gr.CheckboxGroup(
label="Runs", choices=[], interactive=True, elem_id="run-cb"
)
gr.HTML("<hr>")
realtime_cb = gr.Checkbox(label="Refresh metrics realtime", value=True)
smoothing_cb = gr.Checkbox(label="Smooth metrics", value=True)
x_axis_dd = gr.Dropdown(
label="X-axis",
choices=["step", "time"],
value="step",
)
timer = gr.Timer(value=1)
metrics_subset = gr.State([])
user_interacted_with_run_cb = gr.State(False)
gr.on([demo.load], fn=configure, outputs=[metrics_subset, sidebar])
gr.on(
[demo.load],
fn=get_projects,
outputs=project_dd,
show_progress="hidden",
)
gr.on(
[timer.tick],
fn=update_runs,
inputs=[project_dd, run_tb, user_interacted_with_run_cb],
outputs=[run_cb, run_tb],
show_progress="hidden",
)
gr.on(
[demo.load, project_dd.change],
fn=update_runs,
inputs=[project_dd, run_tb],
outputs=[run_cb, run_tb],
show_progress="hidden",
)
gr.on(
[demo.load, project_dd.change, run_cb.change],
fn=update_x_axis_choices,
inputs=[project_dd, run_cb],
outputs=x_axis_dd,
show_progress="hidden",
)
realtime_cb.change(
fn=toggle_timer,
inputs=realtime_cb,
outputs=timer,
api_name="toggle_timer",
)
run_cb.input(
fn=lambda: True,
outputs=user_interacted_with_run_cb,
)
run_tb.input(
fn=filter_runs,
inputs=[project_dd, run_tb],
outputs=run_cb,
)
gr.api(
fn=upload_db_to_space,
api_name="upload_db_to_space",
)
gr.api(
fn=log,
api_name="log",
)
x_lim = gr.State(None)
last_steps = gr.State({})
def update_x_lim(select_data: gr.SelectData):
return select_data.index
def update_last_steps(project, runs):
"""Update the last step from all runs to detect when new data is available."""
if not project or not runs:
return {}
last_steps = {}
for run in runs:
metrics = SQLiteStorage.get_metrics(project, run)
if metrics:
df = pd.DataFrame(metrics)
if "step" not in df.columns:
df["step"] = range(len(df))
if not df.empty:
last_steps[run] = df["step"].max().item()
else:
last_steps[run] = 0
else:
last_steps[run] = 0
return last_steps
timer.tick(
fn=update_last_steps,
inputs=[project_dd, run_cb],
outputs=last_steps,
show_progress="hidden",
)
@gr.render(
triggers=[
demo.load,
run_cb.change,
last_steps.change,
smoothing_cb.change,
x_lim.change,
x_axis_dd.change,
],
inputs=[project_dd, run_cb, smoothing_cb, metrics_subset, x_lim, x_axis_dd],
show_progress="hidden",
)
def update_dashboard(project, runs, smoothing, metrics_subset, x_lim_value, x_axis):
dfs = []
original_runs = runs.copy()
for run in runs:
df = load_run_data(project, run, smoothing, x_axis)
if df is not None:
dfs.append(df)
if dfs:
master_df = pd.concat(dfs, ignore_index=True)
else:
master_df = pd.DataFrame()
if master_df.empty:
return
x_column = "step"
if dfs and not dfs[0].empty and "x_axis" in dfs[0].columns:
x_column = dfs[0]["x_axis"].iloc[0]
numeric_cols = master_df.select_dtypes(include="number").columns
numeric_cols = [c for c in numeric_cols if c not in RESERVED_KEYS]
if metrics_subset:
numeric_cols = [c for c in numeric_cols if c in metrics_subset]
numeric_cols = sort_metrics_by_prefix(list(numeric_cols))
color_map = get_color_mapping(original_runs, smoothing)
with gr.Row(key="row"):
for metric_idx, metric_name in enumerate(numeric_cols):
metric_df = master_df.dropna(subset=[metric_name])
if not metric_df.empty:
plot = gr.LinePlot(
metric_df,
x=x_column,
y=metric_name,
color="run" if "run" in metric_df.columns else None,
color_map=color_map,
title=metric_name,
key=f"plot-{metric_idx}",
preserved_by_key=None,
x_lim=x_lim_value,
y_lim=[
metric_df[metric_name].min(),
metric_df[metric_name].max(),
],
show_fullscreen_button=True,
min_width=400,
)
plot.select(update_x_lim, outputs=x_lim, key=f"select-{metric_idx}")
plot.double_click(
lambda: None, outputs=x_lim, key=f"double-{metric_idx}"
)
if __name__ == "__main__":
demo.launch(allowed_paths=[TRACKIO_LOGO_PATH], show_api=False, show_error=True)
|