Spaces:
Runtime error
Runtime error
File size: 7,387 Bytes
e51e8f8 58113ed e51e8f8 6e67bdd e51e8f8 58113ed 758ca0a 58113ed 850f439 58113ed 8410cc1 70a5579 58113ed e51e8f8 77df2c6 968af70 e51e8f8 968af70 e51e8f8 968af70 e51e8f8 968af70 e51e8f8 6e67bdd bde2e64 968af70 bde2e64 6e67bdd 968af70 bde2e64 6e67bdd bde2e64 6e67bdd bde2e64 968af70 e51e8f8 968af70 e51e8f8 968af70 e51e8f8 968af70 58113ed 8410cc1 58113ed 968af70 70a5579 cc8cf29 968af70 850f439 968af70 6fd31fb cc8cf29 6e67bdd 70a5579 968af70 e51e8f8 6e67bdd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
import datetime
import operator
import pathlib
import pandas as pd
import tqdm.auto
import yaml
from huggingface_hub import HfApi
from constants import (OWNER_CHOICES, SLEEP_TIME_INT_TO_STR,
SLEEP_TIME_STR_TO_INT, WHOAMI)
repo_dir = pathlib.Path(__file__).parent
class DemoList:
COLUMN_INFO = [
['status', 'markdown'],
['hardware', 'markdown'],
['title', 'markdown'],
['owner', 'markdown'],
['arxiv', 'markdown'],
['github', 'markdown'],
['likes', 'number'],
['tags', 'str'],
['last_modified', 'str'],
['created', 'str'],
['sdk', 'markdown'],
['sdk_version', 'str'],
['suggested_hardware', 'markdown'],
['sleep_time', 'markdown'],
['replicas', 'markdown'],
]
def __init__(self):
self.api = HfApi()
self._raw_data = self.load_data()
self.df_raw = pd.DataFrame(self._raw_data)
self.df = self.prettify_df()
@property
def column_names(self):
return list(map(operator.itemgetter(0), self.COLUMN_INFO))
@property
def column_datatype(self):
return list(map(operator.itemgetter(1), self.COLUMN_INFO))
@staticmethod
def get_space_id(url: str) -> str:
return '/'.join(url.split('/')[-2:])
def load_data(self) -> list[dict]:
with open(repo_dir / 'list.yaml') as f:
data = yaml.safe_load(f)
res = []
for url in tqdm.auto.tqdm(list(data)):
space_id = self.get_space_id(url)
space_info = self.api.space_info(repo_id=space_id)
card = space_info.cardData
info: dict = data[url] | {
'url': url,
'title': card['title'] if 'title' in card else space_id,
'owner': space_id.split('/')[0],
'sdk': card['sdk'],
'sdk_version': card.get('sdk_version', ''),
'likes': space_info.likes,
'private': space_info.private,
'last_modified': space_info.lastModified,
'status': space_info.runtime['stage'],
'suggested_hardware': card.get('suggested_hardware', ''),
}
for tag in ['arxiv', 'github', 'tags']:
if tag not in info:
info[tag] = []
# `current` of paused Spaces is `None`, but `requested` is not
info['hardware'] = space_info.runtime['hardware']['current']
if info['hardware'] is None:
info['hardware'] = space_info.runtime['hardware']['requested']
# `gcTimeout` is `None` for `cpu-basic` Spaces and Spaces
# with "Don't sleep" sleep time.
# We use `-1` to represent it.
info['sleep_time'] = space_info.runtime['gcTimeout'] or -1
if info['sleep_time'] not in SLEEP_TIME_INT_TO_STR:
print(space_id)
print(f'Unknown sleep time: {info["sleep_time"]}')
continue
# `resources` of paused Spaces is `None`
resources = space_info.runtime['resources']
info['replicas'] = -1 if resources is None else resources[
'replicas']
res.append(info)
return res
def get_arxiv_link(self, links: list[str]) -> str:
links = [self.create_link(link.split('/')[-1], link) for link in links]
return '\n'.join(links)
def get_github_link(self, links: list[str]) -> str:
links = [self.create_link('github', link) for link in links]
return '\n'.join(links)
def get_tag_list(self, tags: list[str]) -> str:
return ', '.join(tags)
@staticmethod
def create_link(text: str, url: str) -> str:
return f'<a href={url} target="_blank">{text}</a>'
def to_div(self, text: str | None, category_name: str) -> str:
if text is None:
text = ''
class_name = f'{category_name}-{text.lower()}'
return f'<div class="{class_name}">{text}</div>'
@staticmethod
def format_timestamp(timestamp: str) -> str:
s = datetime.datetime.strptime(timestamp, '%Y-%m-%dT%H:%M:%S.000Z')
return s.strftime('%Y/%m/%d %H:%M:%S')
@staticmethod
def add_div_tag_to_replicas(replicas: int) -> str:
if replicas == -1:
return ''
if replicas == 1:
return '1'
return f'<div class="multiple-replicas">{replicas}</div>'
@staticmethod
def add_div_tag_to_sleep_time(sleep_time_s: str, hardware: str) -> str:
if hardware == 'cpu-basic':
return f'<div class="sleep-time-cpu-basic">{sleep_time_s}</div>'
s = sleep_time_s.replace(' ', '-')
return f'<div class="sleep-time-{s}">{sleep_time_s}</div>'
def prettify_df(self) -> pd.DataFrame:
new_rows = []
for _, row in self.df_raw.copy().iterrows():
new_row = {
'status':
self.to_div(row.status, 'status'),
'hardware':
self.to_div(row.hardware, 'hardware'),
'suggested_hardware':
self.to_div(row.suggested_hardware, 'hardware'),
'title':
self.create_link(row.title, row.url),
'owner':
self.create_link(row.owner,
f'https://huggingface.co/{row.owner}'),
'arxiv':
self.get_arxiv_link(row.arxiv),
'github':
self.get_github_link(row.github),
'likes':
row.likes,
'tags':
self.get_tag_list(row.tags),
'last_modified':
self.format_timestamp(row.last_modified),
'created':
self.format_timestamp(row.created),
'sdk':
self.to_div(row.sdk, 'sdk'),
'sdk_version':
row.sdk_version,
'sleep_time':
self.add_div_tag_to_sleep_time(
SLEEP_TIME_INT_TO_STR[row.sleep_time], row.hardware),
'replicas':
self.add_div_tag_to_replicas(row.replicas),
}
new_rows.append(new_row)
df = pd.DataFrame(new_rows).loc[:, self.column_names]
return df
def apply_filter(
self,
status: list[str],
hardware: list[str],
sleep_time: list[str],
multiple_replicas: bool,
sdk: list[str],
visibility: list[str],
owner: list[str],
) -> pd.DataFrame:
df_raw = self.df_raw
df = self.df
if multiple_replicas:
df = df[df_raw.replicas > 1]
if visibility == ['public']:
df = df[~df_raw.private]
elif visibility == ['private']:
df = df[df_raw.private]
df = df[(df_raw.status.isin(status)) & (df_raw.hardware.isin(hardware))
& (df_raw.sdk.isin(sdk))]
sleep_time_int = [SLEEP_TIME_STR_TO_INT[s] for s in sleep_time]
df = df[df_raw.sleep_time.isin(sleep_time_int)]
if set(owner) == set(OWNER_CHOICES):
pass
elif WHOAMI in owner:
df = df[df_raw.owner == WHOAMI]
else:
df = df[df_raw.owner != WHOAMI]
return df
|