Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -110,21 +110,40 @@ face_adapter = f'/data/checkpoints/ip-adapter.bin'
|
|
| 110 |
controlnet_path = f'/data/checkpoints/ControlNetModel'
|
| 111 |
|
| 112 |
# load IdentityNet
|
|
|
|
| 113 |
identitynet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch.float16)
|
| 114 |
zoedepthnet = ControlNetModel.from_pretrained("diffusers/controlnet-zoe-depth-sdxl-1.0",torch_dtype=torch.float16)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 115 |
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 116 |
pipe = StableDiffusionXLInstantIDImg2ImgPipeline.from_pretrained("rubbrband/albedobaseXL_v21",
|
| 117 |
vae=vae,
|
| 118 |
controlnet=[identitynet, zoedepthnet],
|
| 119 |
torch_dtype=torch.float16)
|
| 120 |
-
|
| 121 |
-
compel = Compel(tokenizer=[pipe.tokenizer, pipe.tokenizer_2] , text_encoder=[pipe.text_encoder, pipe.text_encoder_2], returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED, requires_pooled=[False, True])
|
| 122 |
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config, use_karras_sigmas=True)
|
| 123 |
pipe.load_ip_adapter_instantid(face_adapter)
|
| 124 |
pipe.set_ip_adapter_scale(0.8)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
zoe = ZoeDetector.from_pretrained("lllyasviel/Annotators")
|
|
|
|
|
|
|
|
|
|
| 126 |
zoe.to(device)
|
| 127 |
-
|
| 128 |
pipe.to(device)
|
| 129 |
|
| 130 |
last_lora = ""
|
|
|
|
| 110 |
controlnet_path = f'/data/checkpoints/ControlNetModel'
|
| 111 |
|
| 112 |
# load IdentityNet
|
| 113 |
+
st = time.time()
|
| 114 |
identitynet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch.float16)
|
| 115 |
zoedepthnet = ControlNetModel.from_pretrained("diffusers/controlnet-zoe-depth-sdxl-1.0",torch_dtype=torch.float16)
|
| 116 |
+
et = time.time()
|
| 117 |
+
elapsed_time = et - st
|
| 118 |
+
print('Loading ControlNet took: ', elapsed_time, 'seconds')
|
| 119 |
+
st = time.time()
|
| 120 |
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
| 121 |
+
et = time.time()
|
| 122 |
+
elapsed_time = et - st
|
| 123 |
+
print('Loading VAE took: ', elapsed_time, 'seconds')
|
| 124 |
+
st = time.time()
|
| 125 |
pipe = StableDiffusionXLInstantIDImg2ImgPipeline.from_pretrained("rubbrband/albedobaseXL_v21",
|
| 126 |
vae=vae,
|
| 127 |
controlnet=[identitynet, zoedepthnet],
|
| 128 |
torch_dtype=torch.float16)
|
|
|
|
|
|
|
| 129 |
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config, use_karras_sigmas=True)
|
| 130 |
pipe.load_ip_adapter_instantid(face_adapter)
|
| 131 |
pipe.set_ip_adapter_scale(0.8)
|
| 132 |
+
et = time.time()
|
| 133 |
+
elapsed_time = et - st
|
| 134 |
+
print('Loading pipeline took: ', elapsed_time, 'seconds')
|
| 135 |
+
st = time.time()
|
| 136 |
+
compel = Compel(tokenizer=[pipe.tokenizer, pipe.tokenizer_2] , text_encoder=[pipe.text_encoder, pipe.text_encoder_2], returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED, requires_pooled=[False, True])
|
| 137 |
+
et = time.time()
|
| 138 |
+
elapsed_time = et - st
|
| 139 |
+
print('Loading Compel took: ', elapsed_time, 'seconds')
|
| 140 |
+
|
| 141 |
+
st = time.time()
|
| 142 |
zoe = ZoeDetector.from_pretrained("lllyasviel/Annotators")
|
| 143 |
+
et = time.time()
|
| 144 |
+
elapsed_time = et - st
|
| 145 |
+
print('Loading Zoe took: ', elapsed_time, 'seconds')
|
| 146 |
zoe.to(device)
|
|
|
|
| 147 |
pipe.to(device)
|
| 148 |
|
| 149 |
last_lora = ""
|