Commit
·
ed3015b
1
Parent(s):
ee3f8bf
adding keyword crawling from google api in the flow
Browse files
app.py
CHANGED
@@ -1,6 +1,31 @@
|
|
1 |
import gradio as gr
|
2 |
import re
|
3 |
from transformers import pipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
title = "Fold: Contextual Tag Recommendation System"
|
6 |
description = "powered by bart-large-mnli, made by @abhisheky127"
|
@@ -8,42 +33,22 @@ description = "powered by bart-large-mnli, made by @abhisheky127"
|
|
8 |
classifier = pipeline("zero-shot-classification",
|
9 |
model="facebook/bart-large-mnli")
|
10 |
|
|
|
|
|
|
|
|
|
11 |
#define a function to process your input and output
|
12 |
def zero_shot(doc, candidates):
|
13 |
given_labels = candidates.split(",")
|
14 |
given_labels = list(map(str.strip, given_labels))
|
15 |
doc = preprocess(doc)
|
|
|
16 |
print(doc)
|
17 |
dictionary = classifier(doc, given_labels)
|
18 |
labels = dictionary['labels']
|
19 |
scores = dictionary['scores']
|
20 |
return dict(zip(labels, scores))
|
21 |
|
22 |
-
#define a function to preprocess transaction query
|
23 |
-
# def preprocess(transaction):
|
24 |
-
# pattern = r'([A-Za-z0-9\s]+)(?:/| |$)'
|
25 |
-
# match = re.search(pattern, transaction)
|
26 |
-
# if match:
|
27 |
-
# return match.group(1).strip()
|
28 |
-
# return None
|
29 |
-
|
30 |
-
# def preprocess(transaction):
|
31 |
-
# remove_words = ["pos", "mps", "bil", "onl"]
|
32 |
-
|
33 |
-
# # Convert to lowercase
|
34 |
-
# transaction = transaction.lower()
|
35 |
-
|
36 |
-
# # Remove unwanted words
|
37 |
-
# for word in remove_words:
|
38 |
-
# transaction = transaction.replace(word, "")
|
39 |
-
|
40 |
-
# # Remove special characters and digits
|
41 |
-
# transaction = re.sub(r"[^a-z\s]+", "", transaction)
|
42 |
-
|
43 |
-
# # Remove extra spaces
|
44 |
-
# transaction = re.sub(r"\s+", " ", transaction).strip()
|
45 |
-
# return transaction
|
46 |
-
|
47 |
def preprocess(text):
|
48 |
# Remove digits
|
49 |
cleaned_text = re.sub(r'\d', '', text)
|
|
|
1 |
import gradio as gr
|
2 |
import re
|
3 |
from transformers import pipeline
|
4 |
+
from googlesearch import search
|
5 |
+
import requests
|
6 |
+
from bs4 import BeautifulSoup
|
7 |
+
|
8 |
+
def get_google_description(keyword):
|
9 |
+
query = keyword
|
10 |
+
results = search(query, num_results=1, lang='en')
|
11 |
+
|
12 |
+
for result in results:
|
13 |
+
description = get_description_from_url(result)
|
14 |
+
if description:
|
15 |
+
return description
|
16 |
+
|
17 |
+
return keyword
|
18 |
+
|
19 |
+
def get_description_from_url(url):
|
20 |
+
response = requests.get(url)
|
21 |
+
soup = BeautifulSoup(response.text, 'html.parser')
|
22 |
+
description_tag = soup.find('meta', {'name': 'description'})
|
23 |
+
|
24 |
+
if description_tag:
|
25 |
+
return description_tag.get('content')
|
26 |
+
|
27 |
+
return None
|
28 |
+
|
29 |
|
30 |
title = "Fold: Contextual Tag Recommendation System"
|
31 |
description = "powered by bart-large-mnli, made by @abhisheky127"
|
|
|
33 |
classifier = pipeline("zero-shot-classification",
|
34 |
model="facebook/bart-large-mnli")
|
35 |
|
36 |
+
|
37 |
+
|
38 |
+
|
39 |
+
|
40 |
#define a function to process your input and output
|
41 |
def zero_shot(doc, candidates):
|
42 |
given_labels = candidates.split(",")
|
43 |
given_labels = list(map(str.strip, given_labels))
|
44 |
doc = preprocess(doc)
|
45 |
+
doc = get_google_description(doc)
|
46 |
print(doc)
|
47 |
dictionary = classifier(doc, given_labels)
|
48 |
labels = dictionary['labels']
|
49 |
scores = dictionary['scores']
|
50 |
return dict(zip(labels, scores))
|
51 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
def preprocess(text):
|
53 |
# Remove digits
|
54 |
cleaned_text = re.sub(r'\d', '', text)
|