import streamlit as st from transformers import pipeline from PIL import Image model_path = "abhisheky127/FeedbackSummarizerEnterpret" summarizer = pipeline("summarization", model=model_path) st.title("Feedback Summarizer: Enterpret") st.markdown( """ #### Summarize reviews/feedbacks with fine-tuned T5-small language Model > *powered by Hugging Face T5, Streamlit* ---- """ ) text = "zoomAppstore/Playstoreuser: this is very successful meeting business" pred = summarizer(text) st.write(pred) # file_name = st.file_uploader("Upload a hot dog candidate image") # if file_name is not None: # col1, col2 = st.columns(2) # image = Image.open(file_name) # col1.image(image, use_column_width=True) # predictions = pipeline(image) # col2.header("Probabilities") # for p in predictions: # col2.subheader(f"{ p['label'] }: { round(p['score'] * 100, 1)}%")