import os import openai import gradio as gr import transformers openai.api_key = os.environ["api"] generator = transformers.pipeline("text-generation", model="EleutherAI/gpt-neo-2.7B") def generateBlogTopics(prompt1): response = generator("Generate blog topics on: {}. \n \n 1. ".format(prompt1), max_length=100, do_sample=True, temperature=0.7)[0]["generated_text"] return response def generateBlogSections(prompt1): response = generator("Expand the blog title in to high level blog sections: {} \n\n- Introduction: ".format(prompt1), max_length=100, do_sample=True, temperature=0.6)[0]["generated_text"] return response def blogSectionExpander(prompt1): response = generator("Expand the blog section in to a detailed professional, witty and clever explanation.\n\n {}".format(prompt1), max_length=400, do_sample=True, temperature=0.7)[0]["generated_text"] return response input_text = gr.inputs.Textbox(lines=5, label="Enter prompt text here:") title_section_output = gr.outputs.Textbox(label="Title & Sections") section_expander_output = gr.outputs.Textbox(label="Section Expander") gr.Interface( [generateBlogTopics, generateBlogSections], inputs=input_text, outputs=title_section_output, title="Blog Title & Sections Generator", description="Generate high level sections for your blog topic", live=False ).launch(share=True) gr.Interface( blogSectionExpander, inputs=input_text, outputs=section_expander_output, title="Blog Section Expander", description="Expand your blog sections with professional and clever explanation", live=False ).launch(share=True)