abhishekt commited on
Commit
d0584c9
·
1 Parent(s): 9118ff9
Files changed (1) hide show
  1. app.py +5 -14
app.py CHANGED
@@ -3,20 +3,16 @@
3
  import gradio as gr
4
  import openai
5
  import re
6
- from transformers import pipeline, set_seed
7
 
8
  # Set up OpenAI API credentials
9
  openai.api_key = os.environ["api"]
10
 
11
- # Set up Hugging Face pipeline for summarization
12
- summarizer = pipeline("summarization", model="t5-base", tokenizer="t5-base")
13
-
14
  # Define the function that generates the blog article
15
  def generate_article(topic):
16
  # Use OpenAI's GPT-3 to generate the article
17
  prompt = f"Write a blog post about {topic} with 5 different sections."
18
  response = openai.Completion.create(
19
- engine="davinci",
20
  prompt=prompt,
21
  max_tokens=2048,
22
  n=1,
@@ -33,16 +29,10 @@ def generate_article(topic):
33
  section_length = len(article) // 5
34
  sections = [article[i:i+section_length] for i in range(0, len(article), section_length)]
35
 
36
- # Set seed for reproducibility in Hugging Face spaces
37
- set_seed(42)
38
-
39
- # Summarize each section to generate subheadings
40
- subheadings = [summarizer(section, max_length=30, min_length=10, do_sample=False)[0]['summary_text'] for section in sections]
41
-
42
- # Combine the sections and subheadings into a formatted blog post
43
  blog_post = f"# {topic}\n\n"
44
  for i in range(5):
45
- blog_post += f"## {subheadings[i]}\n\n{sections[i]}\n\n"
46
 
47
  return blog_post
48
 
@@ -52,8 +42,9 @@ iface = gr.Interface(
52
  inputs=gr.inputs.Textbox("Enter a topic for your blog post"),
53
  outputs=gr.outputs.HTML(),
54
  title="Blog Post Generator",
55
- description="Generate a blog post on a given topic with 5 different sections.",
56
  )
57
 
58
  # Launch the interface
59
  iface.launch(share=True)
 
 
3
  import gradio as gr
4
  import openai
5
  import re
 
6
 
7
  # Set up OpenAI API credentials
8
  openai.api_key = os.environ["api"]
9
 
 
 
 
10
  # Define the function that generates the blog article
11
  def generate_article(topic):
12
  # Use OpenAI's GPT-3 to generate the article
13
  prompt = f"Write a blog post about {topic} with 5 different sections."
14
  response = openai.Completion.create(
15
+ engine="text-davinci-002",
16
  prompt=prompt,
17
  max_tokens=2048,
18
  n=1,
 
29
  section_length = len(article) // 5
30
  sections = [article[i:i+section_length] for i in range(0, len(article), section_length)]
31
 
32
+ # Combine the sections into a formatted blog post
 
 
 
 
 
 
33
  blog_post = f"# {topic}\n\n"
34
  for i in range(5):
35
+ blog_post += f"## Section {i+1}\n\n{sections[i]}\n\n"
36
 
37
  return blog_post
38
 
 
42
  inputs=gr.inputs.Textbox("Enter a topic for your blog post"),
43
  outputs=gr.outputs.HTML(),
44
  title="Blog Post Generator",
45
+ description="Generate a blog post on a given topic with 5 different sections using OpenAI's GPT-3 text model.",
46
  )
47
 
48
  # Launch the interface
49
  iface.launch(share=True)
50
+