Spaces:
Runtime error
Runtime error
from dataclasses import dataclass, field | |
from typing import Optional, List | |
from transformers import Seq2SeqTrainingArguments | |
class ModelArguments: | |
""" | |
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. | |
""" | |
model_name_or_path: str = field( | |
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} | |
) | |
config_name: Optional[str] = field( | |
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} | |
) | |
feature_extractor_name: Optional[str] = field( | |
default=None, metadata={"help": "Pretrained feature extractor name or path if not the same as model_name"} | |
) | |
description_tokenizer_name: Optional[str] = field( | |
default=None, metadata={"help": "Pretrained description tokenizer name or path if not the same as model_name"} | |
) | |
prompt_tokenizer_name: Optional[str] = field( | |
default=None, | |
metadata={"help": "Pretrained prompt tokenizer name or path if not the same as description_tokenizer_name"}, | |
) | |
cache_dir: Optional[str] = field( | |
default=None, | |
metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"}, | |
) | |
use_fast_tokenizer: bool = field( | |
default=True, | |
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}, | |
) | |
model_revision: str = field( | |
default="main", | |
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, | |
) | |
pad_token_id: int = field( | |
default=None, | |
metadata={"help": "If specified, change the model pad token id."}, | |
) | |
decoder_start_token_id: int = field( | |
default=None, | |
metadata={"help": "If specified, change the model decoder start token id."}, | |
) | |
freeze_text_encoder: bool = field( | |
default=False, | |
metadata={"help": "Whether to freeze the text encoder."}, | |
) | |
do_sample: bool = field( | |
default=True, | |
metadata={"help": "Whether to do sampling or greedy decoding."}, | |
) | |
temperature: float = field( | |
default=1.0, | |
metadata={"help": "Temperature if sampling."}, | |
) | |
max_length: int = field( | |
default=2580, | |
metadata={"help": "Generation max length."}, | |
) | |
bandwidth: float = field( | |
default=6, | |
metadata={"help": "Audio encoder bandwidth."}, | |
) | |
asr_model_name_or_path: str = field( | |
default="distil-whisper/distil-large-v2", | |
metadata={ | |
"help": "Used to compute WER during evaluation. Path to pretrained model or model identifier from huggingface.co/models" | |
}, | |
) | |
clap_model_name_or_path: str = field( | |
default="laion/larger_clap_music_and_speech", | |
metadata={ | |
"help": "Used to compute audio similarity during evaluation. Path to pretrained model or model identifier from huggingface.co/models" | |
}, | |
) | |
attn_implementation: str = field( | |
default="eager", | |
metadata={"help": "Attention implementation used. One of `eager`, `sdpa`, `flash_attention_2`"}, | |
) | |
cross_attention_implementation_strategy: str = field( | |
default=None, | |
metadata={ | |
"help": "If not specified, the cross-attention implementation will be the same as `_attn_implementation`. If `always_eager`, it will always be the eager implementation. If `always_sdpa`, it will always be the sdpa implementation." | |
}, | |
) | |
prompt_padding_side: Optional[str] = field( | |
default="left", | |
metadata={ | |
"help": "Prompt tokenizer padding side. Defaults to `left`. If the prompt is pre-pended to the codebooks hidden states, it should be padded on the left." | |
}, | |
) | |
class DataTrainingArguments: | |
""" | |
Arguments pertaining to what data we are going to input our model for training and eval. | |
Using `HfArgumentParser` we can turn this class | |
into argparse arguments to be able to specify them on | |
the command line. | |
""" | |
train_dataset_name: str = field( | |
default=None, | |
metadata={ | |
"help": "The name of the training dataset to use (via the datasets library). Load and combine " | |
"multiple datasets by separating dataset ids by a '+' symbol. For example, to load and combine " | |
" librispeech and common voice, set `train_dataset_name='librispeech_asr+common_voice'`." | |
}, | |
) | |
train_dataset_config_name: Optional[str] = field( | |
default=None, | |
metadata={ | |
"help": "The configuration name of the training dataset to use (via the datasets library). Load and combine " | |
"multiple datasets by separating dataset configs by a '+' symbol." | |
}, | |
) | |
train_split_name: str = field( | |
default="train", | |
metadata={ | |
"help": ("The name of the training data set split to use (via the datasets library). Defaults to 'train'") | |
}, | |
) | |
train_dataset_samples: str = field( | |
default=None, | |
metadata={ | |
"help": "Number of samples in the training data. Load and combine " | |
"multiple datasets by separating dataset samples by a '+' symbol." | |
}, | |
) | |
train_metadata_dataset_name: str = field( | |
default=None, | |
metadata={ | |
"help": "The name of the metadata training dataset to use (via the datasets library). Load and combine " | |
"multiple datasets by separating dataset ids by a '+' symbol. For example, to load and combine " | |
" librispeech and common voice, set `train_dataset_name='librispeech_asr+common_voice'`." | |
}, | |
) | |
eval_dataset_name: str = field( | |
default=None, | |
metadata={ | |
"help": "The name of the evaluation dataset to use (via the datasets library). Defaults to the training dataset name if unspecified." | |
}, | |
) | |
eval_dataset_config_name: Optional[str] = field( | |
default=None, | |
metadata={ | |
"help": "The configuration name of the evaluation dataset to use (via the datasets library). Defaults to the training dataset config name if unspecified" | |
}, | |
) | |
eval_split_name: str = field( | |
default="test", | |
metadata={ | |
"help": "The name of the evaluation data set split to use (via the datasets library). Defaults to 'test'" | |
}, | |
) | |
eval_metadata_dataset_name: str = field( | |
default=None, | |
metadata={ | |
"help": "The name of the metadata training dataset to use (via the datasets library). Load and combine " | |
"multiple datasets by separating dataset ids by a '+' symbol. For example, to load and combine " | |
" librispeech and common voice, set `train_dataset_name='librispeech_asr+common_voice'`." | |
}, | |
) | |
target_audio_column_name: str = field( | |
default="audio", | |
metadata={"help": "The name of the dataset column containing the target audio data. Defaults to 'audio'"}, | |
) | |
description_column_name: str = field( | |
default=None, | |
metadata={"help": "The name of the dataset column containing the description text data. Defaults to 'None'."}, | |
) | |
prompt_column_name: str = field( | |
default=None, | |
metadata={"help": "The name of the dataset column containing the prompt text data. Defaults to 'None'."}, | |
) | |
overwrite_cache: bool = field( | |
default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."} | |
) | |
preprocessing_num_workers: Optional[int] = field( | |
default=None, | |
metadata={"help": "The number of processes to use for the preprocessing."}, | |
) | |
max_train_samples: Optional[int] = field( | |
default=None, | |
metadata={ | |
"help": ( | |
"For debugging purposes or quicker training, truncate the number of training examples to this " | |
"value if set." | |
) | |
}, | |
) | |
max_eval_samples: Optional[int] = field( | |
default=None, | |
metadata={ | |
"help": ( | |
"For debugging purposes or quicker training, truncate the number of validation examples to this " | |
"value if set." | |
) | |
}, | |
) | |
max_duration_in_seconds: float = field( | |
default=35.0, | |
metadata={ | |
"help": ( | |
"Filter audio files that are longer than `max_duration_in_seconds` seconds to 'max_duration_in_seconds`." | |
"Also, used to set maximum audio length if `pad_to_max_length=True`." | |
) | |
}, | |
) | |
min_duration_in_seconds: float = field( | |
default=0.0, metadata={"help": "Filter audio files that are shorter than `min_duration_in_seconds` seconds"} | |
) | |
max_text_length: int = field( | |
default=500, metadata={"help": "If set, max description lengths in number of characters."} | |
) | |
max_prompt_token_length: int = field( | |
default=None, | |
metadata={ | |
"help": ( | |
"If set, filter samples with prompts that are longer than `max_prompt_token_length` tokens." | |
"Also, used to set maximum prompt token length if `pad_to_max_length=True`." | |
) | |
}, | |
) | |
max_description_token_length: int = field( | |
default=None, | |
metadata={ | |
"help": ( | |
"If set, filter samples with descriptions that are longer than `max_description_token_length` tokens." | |
"Also, used to set maximum description token length if `pad_to_max_length=True`." | |
) | |
}, | |
) | |
pad_to_max_length: bool = field( | |
default=False, | |
metadata={ | |
"help": ( | |
"If `True`, pad audio, prompt and description to a maximum length set with respectively " | |
"`max_duration_in_seconds`, `max_prompt_token_length`, `max_description_token_length`." | |
) | |
}, | |
) | |
preprocessing_only: bool = field( | |
default=False, | |
metadata={ | |
"help": ( | |
"Whether to only do data preprocessing and skip training. This is especially useful when data" | |
" preprocessing errors out in distributed training due to timeout. In this case, one should run the" | |
" preprocessing in a non-distributed setup with `preprocessing_only=True` so that the cached datasets" | |
" can consequently be loaded in distributed training." | |
" In this training script, `save_to_disk` must be set to the path in which the dataset should be saved. " | |
) | |
}, | |
) | |
token: str = field( | |
default=None, | |
metadata={ | |
"help": ( | |
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token " | |
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)." | |
) | |
}, | |
) | |
use_auth_token: bool = field( | |
default=None, | |
metadata={ | |
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead." | |
}, | |
) | |
trust_remote_code: bool = field( | |
default=False, | |
metadata={ | |
"help": ( | |
"Whether or not to allow for custom models defined on the Hub in their own modeling files. This option " | |
"should only be set to `True` for repositories you trust and in which you have read the code, as it will " | |
"execute code present on the Hub on your local machine." | |
) | |
}, | |
) | |
add_audio_samples_to_wandb: bool = field( | |
default=False, | |
metadata={"help": "If set and if `wandb` in args.report_to, will add generated audio samples to wandb logs."}, | |
) | |
id_column_name: str = field(default=None, metadata={"help": "id column name."}) | |
wandb_project: str = field( | |
default="parler-speech", | |
metadata={"help": "The name of the wandb project."}, | |
) | |
wandb_run_name: str = field( | |
default=None, | |
metadata={ | |
"help": "If specified, the name of the run. If not specified, wandb will give a random name to this run." | |
}, | |
) | |
save_to_disk: str = field( | |
default=None, | |
metadata={ | |
"help": "If set, will save the dataset to this path if this is an empyt folder. If not empty, will load the datasets from it." | |
}, | |
) | |
temporary_save_to_disk: str = field(default=None, metadata={"help": "Temporarily save audio labels here."}) | |
save_codec_steps: Optional[int] = field( | |
default=500, | |
metadata={"help": "Temporarily save the audio labels every `save_steps`."}, | |
) | |
pad_to_multiple_of: Optional[int] = field( | |
default=2, | |
metadata={"help": ("Pad to multiple of for tokenizers.")}, | |
) | |
class ParlerTTSTrainingArguments(Seq2SeqTrainingArguments): | |
dtype: Optional[str] = field( | |
default="float32", | |
metadata={ | |
"help": ( | |
"The data type (dtype) in which to run training. One of `float32` (full-precision), " | |
"`float16` or `bfloat16` (both half-precision)." | |
) | |
}, | |
) | |
audio_encoder_per_device_batch_size: int = field( | |
default=8, | |
metadata={"help": ("Specify the batch size of the audio encoding pre-processing steps.")}, | |
) | |
eval_dataloader_num_workers: Optional[int] = field( | |
default=0, | |
metadata={ | |
"help": ( | |
"Number of subprocesses to use for evaluation data loading (PyTorch only). 0 means that the data will be loaded in the main process." | |
) | |
}, | |
) | |
compute_clap_similarity_metric: bool = field( | |
default=True, | |
metadata={ | |
"help": ( | |
"Whether or not to compute the clap similarity metric between the description and the generation during evalution." | |
) | |
}, | |
) | |
compute_noise_level_metric: bool = field( | |
default=True, | |
metadata={"help": ("Whether or not to compute the squim si-sdr measure of the generations.")}, | |
) | |
noise_level_to_compute_clean_wer: float = field( | |
default=25, | |
metadata={ | |
"help": ( | |
"if `compute_noise_level_metric=True`, will compute a 'clean' WER on samples with generated noise higher than `noise_level_to_compute_clean_wer`." | |
"This is a proxy measure to compute WER on clean audios, provided that the model learn to generate clean audios." | |
) | |
}, | |
) | |
eval_generation_steps: Optional[int] = field( | |
default=None, | |
metadata={ | |
"help": ( | |
"Number of update steps between two generation evaluation. Will default to the same" | |
"value as `eval_steps` if not set. Should be an integer and a multiple of `eval_steps`." | |
) | |
}, | |
) | |
codebook_weights: Optional[List[float]] = field( | |
default=None, | |
metadata={"help": "Weights applied to each codebook."}, | |
) |