abhishek-kumar commited on
Commit
2e2e73d
·
verified ·
1 Parent(s): 751b97e

Update streamlit_app.py

Browse files
Files changed (1) hide show
  1. src/streamlit_app.py +47 -39
src/streamlit_app.py CHANGED
@@ -1,40 +1,48 @@
1
- import altair as alt
2
- import numpy as np
3
- import pandas as pd
4
  import streamlit as st
5
-
6
- """
7
- # Welcome to Streamlit!
8
-
9
- Edit `/streamlit_app.py` to customize this app to your heart's desire :heart:.
10
- If you have any questions, checkout our [documentation](https://docs.streamlit.io) and [community
11
- forums](https://discuss.streamlit.io).
12
-
13
- In the meantime, below is an example of what you can do with just a few lines of code:
14
- """
15
-
16
- num_points = st.slider("Number of points in spiral", 1, 10000, 1100)
17
- num_turns = st.slider("Number of turns in spiral", 1, 300, 31)
18
-
19
- indices = np.linspace(0, 1, num_points)
20
- theta = 2 * np.pi * num_turns * indices
21
- radius = indices
22
-
23
- x = radius * np.cos(theta)
24
- y = radius * np.sin(theta)
25
-
26
- df = pd.DataFrame({
27
- "x": x,
28
- "y": y,
29
- "idx": indices,
30
- "rand": np.random.randn(num_points),
31
- })
32
-
33
- st.altair_chart(alt.Chart(df, height=700, width=700)
34
- .mark_point(filled=True)
35
- .encode(
36
- x=alt.X("x", axis=None),
37
- y=alt.Y("y", axis=None),
38
- color=alt.Color("idx", legend=None, scale=alt.Scale()),
39
- size=alt.Size("rand", legend=None, scale=alt.Scale(range=[1, 150])),
40
- ))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import streamlit as st
2
+ import pandas as pd
3
+ import requests
4
+ import io
5
+
6
+ st.set_page_config(page_title="SuperKart Sales Prediction", page_icon="🛒")
7
+
8
+ st.title("SuperKart Sales Prediction")
9
+ st.write("Upload a CSV file to get sales predictions")
10
+
11
+ # File uploader
12
+ uploaded_file = st.file_uploader("Choose a CSV file", type="csv")
13
+
14
+ if uploaded_file is not None:
15
+ # Display the uploaded data
16
+ df = pd.read_csv(uploaded_file)
17
+ st.write("Preview of uploaded data:")
18
+ st.dataframe(df.head())
19
+
20
+ if st.button("Get Predictions"):
21
+ # Prepare the file for API request
22
+ files = {"file": ("SuperKart.csv", uploaded_file.getvalue(), "text/csv")}
23
+
24
+ try:
25
+ # Make request to the backend API
26
+ response = requests.post("https://huggingface.co/spaces/abhishek-kumar/superkart_sales_backend/predict", files=files)
27
+
28
+ if response.status_code == 200:
29
+ predictions = response.json()["predictions"]
30
+
31
+ # Add predictions to the dataframe
32
+ df["Predicted_Sales"] = predictions
33
+
34
+ st.write("Predictions:")
35
+ st.dataframe(df)
36
+
37
+ # Download button for results
38
+ csv = df.to_csv(index=False)
39
+ st.download_button(
40
+ label="Download predictions",
41
+ data=csv,
42
+ file_name="predictions.csv",
43
+ mime="text/csv"
44
+ )
45
+ else:
46
+ st.error("Error getting predictions from the API")
47
+ except Exception as e:
48
+ st.error(f"Error: {str(e)}")