abhinavyadav11 commited on
Commit
4fe3a6c
·
verified ·
1 Parent(s): 5ebd830

Upload 2 files

Browse files
Files changed (2) hide show
  1. app.py +113 -0
  2. main.py +64 -0
app.py ADDED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import os
3
+ from dotenv import load_dotenv
4
+ from transformers import pipeline
5
+ from io import BytesIO
6
+ from pypdf import PdfReader
7
+ from langchain_community.embeddings import HuggingFaceEmbeddings
8
+ from langchain_community.vectorstores import FAISS
9
+ from main import get_index_for_pdf # Assuming 'main.py' contains this function
10
+
11
+ # Initialize session state for the app
12
+ if "vectordb" not in st.session_state:
13
+ st.session_state["vectordb"] = None
14
+ if "prompt" not in st.session_state:
15
+ st.session_state["prompt"] = [{"role": "system", "content": "none"}]
16
+
17
+ # Set the title for the Streamlit app
18
+ st.title("RAG Enhance Chatbot")
19
+
20
+ # Hugging Face API Key (avoid hardcoding for production)
21
+ load_dotenv()
22
+ HUGGINGFACE_API_KEY = os.getenv("HUGGINGFACE_API_KEY")
23
+
24
+
25
+ # st.title('Model Configuration')
26
+ # model_name = st.sidebar.selectbox(
27
+ # "Choose a Hugging Face Model",
28
+ # [
29
+ # "sentence-transformers/all-mpnet-base-v2",
30
+ # "sentence-transformers/all-MiniLM-L6-v2",
31
+ # "msmarco-distilbert-base-tas-b",
32
+ # "deepset/roberta-large-squad2",
33
+ # "facebook/dpr-ctx_encoder-single-nq-base"
34
+ # ],
35
+ # index=0 # Default model
36
+ # )
37
+
38
+ # Define the QA pipeline
39
+ qa_pipeline = pipeline(
40
+ "question-answering",
41
+ model="deepset/roberta-base-squad2", # Replace with your desired model
42
+ use_auth_token=HUGGINGFACE_API_KEY
43
+ )
44
+
45
+ # Define a prompt template for the assistant
46
+ prompt_template = """
47
+ You are a helpful Assistant who answers users' questions based on PDF extracts.
48
+
49
+ Keep your answer lengthy and if long make points.
50
+
51
+ Context information includes 'filename' and 'page'. Always reference these in your responses.
52
+
53
+ If the text is irrelevant or insufficient to answer, respond with "Not applicable."
54
+
55
+ The provided PDF content is:
56
+ {pdf_extract}
57
+ """
58
+
59
+ # Cached function to create a vector database for the provided PDF files
60
+ @st.cache_data
61
+ def create_vectordb(files, filenames, huggingface_model_name):
62
+ # Show a spinner while creating the vector database
63
+ with st.spinner("Creating Vector Database..."):
64
+ vectordb = get_index_for_pdf(
65
+ [file.getvalue() for file in files], filenames, huggingface_model_name
66
+ )
67
+ return vectordb
68
+
69
+ # Upload PDF files using Streamlit file uploader
70
+ pdf_files = st.file_uploader("Upload your PDFs", type="pdf", accept_multiple_files=True)
71
+
72
+ # If PDF files are uploaded, create the vector database and store it in the session state
73
+ if pdf_files:
74
+ pdf_file_names = [file.name for file in pdf_files]
75
+ huggingface_model_name = "sentence-transformers/all-MiniLM-L6-v2" # Correct model name
76
+ st.session_state["vectordb"] = create_vectordb(pdf_files, pdf_file_names, huggingface_model_name)
77
+
78
+ # Display previous chat messages
79
+ for message in st.session_state["prompt"]:
80
+ if message["role"] != "system":
81
+ with st.chat_message(message["role"]):
82
+ st.write(message["content"])
83
+
84
+ # Get the user's question using Streamlit chat input
85
+ question = st.chat_input("Ask anything")
86
+
87
+ # Handle the user's question
88
+ if question:
89
+ vectordb = st.session_state.get("vectordb", None)
90
+ if not vectordb:
91
+ with st.chat_message("assistant"):
92
+ st.write("You need to upload a PDF first.")
93
+ st.stop()
94
+
95
+ # Search the vector database for similar content to the user's question
96
+ search_results = vectordb.similarity_search(question, k=3)
97
+ pdf_extract = "\n".join(
98
+ [
99
+ f"{result.page_content} (Filename: {result.metadata['filename']}, Page: {result.metadata['page']})"
100
+ for result in search_results
101
+ ]
102
+ )
103
+
104
+ # Use the QA pipeline with the context
105
+ response = qa_pipeline(question=question, context=pdf_extract)
106
+
107
+ # Update the assistant's response
108
+ with st.chat_message("assistant"):
109
+ st.write(response["answer"])
110
+
111
+ # Update the session state prompt
112
+ st.session_state["prompt"].append({"role": "user", "content": question})
113
+ st.session_state["prompt"].append({"role": "assistant", "content": response["answer"]})
main.py ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import re
2
+ from io import BytesIO
3
+ from typing import Tuple, List
4
+ import pickle
5
+
6
+ from langchain.docstore.document import Document
7
+ from langchain.embeddings.huggingface import HuggingFaceEmbeddings
8
+ from langchain.text_splitter import RecursiveCharacterTextSplitter
9
+ from langchain.vectorstores.faiss import FAISS
10
+ from pypdf import PdfReader
11
+ import faiss
12
+
13
+
14
+ def parse_pdf(file: BytesIO, filename: str) -> Tuple[List[str], str]:
15
+ pdf = PdfReader(file)
16
+ output = []
17
+ for page in pdf.pages:
18
+ text = page.extract_text()
19
+ text = re.sub(r"(\w+)-\n(\w+)", r"\1\2", text)
20
+ text = re.sub(r"(?<!\n\s)\n(?!\s\n)", " ", text.strip())
21
+ text = re.sub(r"\n\s*\n", "\n\n", text)
22
+ output.append(text)
23
+ return output, filename
24
+
25
+
26
+ def text_to_docs(text: List[str], filename: str) -> List[Document]:
27
+ if isinstance(text, str):
28
+ text = [text]
29
+ page_docs = [Document(page_content=page) for page in text]
30
+ for i, doc in enumerate(page_docs):
31
+ doc.metadata["page"] = i + 1
32
+
33
+ doc_chunks = []
34
+ for doc in page_docs:
35
+ text_splitter = RecursiveCharacterTextSplitter(
36
+ chunk_size=4000,
37
+ separators=["\n\n", "\n", ".", "!", "?", ",", " ", ""],
38
+ chunk_overlap=0,
39
+ )
40
+ chunks = text_splitter.split_text(doc.page_content)
41
+ for i, chunk in enumerate(chunks):
42
+ doc = Document(
43
+ page_content=chunk, metadata={"page": doc.metadata["page"], "chunk": i}
44
+ )
45
+ doc.metadata["source"] = f"{doc.metadata['page']}-{doc.metadata['chunk']}"
46
+ doc.metadata["filename"] = filename # Add filename to metadata
47
+ doc_chunks.append(doc)
48
+ return doc_chunks
49
+
50
+
51
+ def docs_to_index(docs, huggingface_model_name):
52
+ # Using Hugging Face embeddings
53
+ embedding_model = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
54
+ index = FAISS.from_documents(docs, embedding_model)
55
+ return index
56
+
57
+
58
+ def get_index_for_pdf(pdf_files, pdf_names, huggingface_model_name):
59
+ documents = []
60
+ for pdf_file, pdf_name in zip(pdf_files, pdf_names):
61
+ text, filename = parse_pdf(BytesIO(pdf_file), pdf_name)
62
+ documents = documents + text_to_docs(text, filename)
63
+ index = docs_to_index(documents, huggingface_model_name)
64
+ return index