Spaces:
Runtime error
Runtime error
import gradio as gr | |
from db import get_db | |
from chain import get_chain | |
import logging | |
logger = logging.getLogger(__name__) | |
logger.info('Instantiating vectordb') | |
vectordb = get_db( | |
chunk_size=1000, | |
chunk_overlap=200, | |
model_name = 'intfloat/multilingual-e5-large-instruct', | |
) | |
logger.info('Instantiating chain') | |
chain = get_chain( | |
vectordb, | |
repo_id="HuggingFaceH4/zephyr-7b-beta", | |
task="text-generation", | |
max_new_tokens=512, | |
top_k=30, | |
temperature=0.1, | |
repetition_penalty=1.03, | |
search_type="mmr", | |
k=3, | |
fetch_k=5, | |
template="""Use the following sentences of context to answer the question at the end. | |
If you don't know the answer, that is if the answer is not in the context, then just say that you don't know, don't try to make up an answer. | |
Always say "Thanks for asking!" at the end of the answer. | |
{context} | |
Question: {question} | |
Helpful Answer:""" | |
) | |
def respond( | |
question, | |
_, # Ignore the message history parameter since we are doing one-off invocations | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
logger.info(f'respond called by Gradio ChatInterface with question={question}') | |
return chain.invoke({'question': question}) | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch( | |
show_error=True, | |
enable_monitoring=True | |
) | |