Spaces:
Runtime error
Runtime error
Update ldm/modules/encoders/modules.py
Browse files- ldm/modules/encoders/modules.py +582 -582
ldm/modules/encoders/modules.py
CHANGED
|
@@ -1,582 +1,582 @@
|
|
| 1 |
-
import torch
|
| 2 |
-
import torch.nn as nn
|
| 3 |
-
from functools import partial
|
| 4 |
-
from ldm.modules.x_transformer import Encoder, TransformerWrapper # TODO: can we directly rely on lucidrains code and simply add this as a reuirement? --> test
|
| 5 |
-
from torch.utils.checkpoint import checkpoint
|
| 6 |
-
from transformers import T5Tokenizer, T5EncoderModel, CLIPTokenizer, CLIPTextModel, AutoTokenizer
|
| 7 |
-
from importlib_resources import files
|
| 8 |
-
from ldm.modules.encoders.CLAP.utils import read_config_as_args
|
| 9 |
-
from ldm.modules.encoders.CLAP.clap import TextEncoder
|
| 10 |
-
import copy
|
| 11 |
-
from ldm.util import default, count_params
|
| 12 |
-
import pytorch_lightning as pl
|
| 13 |
-
|
| 14 |
-
class AbstractEncoder(pl.LightningModule):
|
| 15 |
-
def __init__(self):
|
| 16 |
-
super().__init__()
|
| 17 |
-
|
| 18 |
-
def encode(self, *args, **kwargs):
|
| 19 |
-
raise NotImplementedError
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
class ClassEmbedder(nn.Module):
|
| 23 |
-
def __init__(self, embed_dim, n_classes=1000, key='class'):
|
| 24 |
-
super().__init__()
|
| 25 |
-
self.key = key
|
| 26 |
-
self.embedding = nn.Embedding(n_classes, embed_dim)
|
| 27 |
-
|
| 28 |
-
def forward(self, batch, key=None):
|
| 29 |
-
if key is None:
|
| 30 |
-
key = self.key
|
| 31 |
-
# this is for use in crossattn
|
| 32 |
-
c = batch[key][:, None]# (bsz,1)
|
| 33 |
-
c = self.embedding(c)
|
| 34 |
-
return c
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
class TransformerEmbedder(AbstractEncoder):
|
| 38 |
-
"""Some transformer encoder layers"""
|
| 39 |
-
def __init__(self, n_embed, n_layer, vocab_size, max_seq_len=77, device="cuda"):
|
| 40 |
-
super().__init__()
|
| 41 |
-
self.device = device
|
| 42 |
-
self.transformer = TransformerWrapper(num_tokens=vocab_size, max_seq_len=max_seq_len,
|
| 43 |
-
attn_layers=Encoder(dim=n_embed, depth=n_layer))
|
| 44 |
-
|
| 45 |
-
def forward(self, tokens):
|
| 46 |
-
tokens = tokens.to(self.device) # meh
|
| 47 |
-
z = self.transformer(tokens, return_embeddings=True)
|
| 48 |
-
return z
|
| 49 |
-
|
| 50 |
-
def encode(self, x):
|
| 51 |
-
return self(x)
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
class BERTTokenizer(AbstractEncoder):
|
| 55 |
-
""" Uses a pretrained BERT tokenizer by huggingface. Vocab size: 30522 (?)"""
|
| 56 |
-
def __init__(self, device="cuda", vq_interface=True, max_length=77):
|
| 57 |
-
super().__init__()
|
| 58 |
-
from transformers import BertTokenizerFast # TODO: add to reuquirements
|
| 59 |
-
self.tokenizer = BertTokenizerFast.from_pretrained("bert-base-uncased")
|
| 60 |
-
self.device = device
|
| 61 |
-
self.vq_interface = vq_interface
|
| 62 |
-
self.max_length = max_length
|
| 63 |
-
|
| 64 |
-
def forward(self, text):
|
| 65 |
-
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
|
| 66 |
-
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
|
| 67 |
-
tokens = batch_encoding["input_ids"].to(self.device)
|
| 68 |
-
return tokens
|
| 69 |
-
|
| 70 |
-
@torch.no_grad()
|
| 71 |
-
def encode(self, text):
|
| 72 |
-
tokens = self(text)
|
| 73 |
-
if not self.vq_interface:
|
| 74 |
-
return tokens
|
| 75 |
-
return None, None, [None, None, tokens]
|
| 76 |
-
|
| 77 |
-
def decode(self, text):
|
| 78 |
-
return text
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
class BERTEmbedder(AbstractEncoder):# 这里不是用的pretrained bert,是用的transformers的BertTokenizer加自定义的TransformerWrapper
|
| 82 |
-
"""Uses the BERT tokenizr model and add some transformer encoder layers"""
|
| 83 |
-
def __init__(self, n_embed, n_layer, vocab_size=30522, max_seq_len=77,
|
| 84 |
-
device="cuda",use_tokenizer=True, embedding_dropout=0.0):
|
| 85 |
-
super().__init__()
|
| 86 |
-
self.use_tknz_fn = use_tokenizer
|
| 87 |
-
if self.use_tknz_fn:
|
| 88 |
-
self.tknz_fn = BERTTokenizer(vq_interface=False, max_length=max_seq_len)
|
| 89 |
-
self.device = device
|
| 90 |
-
self.transformer = TransformerWrapper(num_tokens=vocab_size, max_seq_len=max_seq_len,
|
| 91 |
-
attn_layers=Encoder(dim=n_embed, depth=n_layer),
|
| 92 |
-
emb_dropout=embedding_dropout)
|
| 93 |
-
|
| 94 |
-
def forward(self, text):
|
| 95 |
-
if self.use_tknz_fn:
|
| 96 |
-
tokens = self.tknz_fn(text)#.to(self.device)
|
| 97 |
-
else:
|
| 98 |
-
tokens = text
|
| 99 |
-
z = self.transformer(tokens, return_embeddings=True)
|
| 100 |
-
return z
|
| 101 |
-
|
| 102 |
-
def encode(self, text):
|
| 103 |
-
# output of length 77
|
| 104 |
-
return self(text)
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
class SpatialRescaler(nn.Module):
|
| 108 |
-
def __init__(self,
|
| 109 |
-
n_stages=1,
|
| 110 |
-
method='bilinear',
|
| 111 |
-
multiplier=0.5,
|
| 112 |
-
in_channels=3,
|
| 113 |
-
out_channels=None,
|
| 114 |
-
bias=False):
|
| 115 |
-
super().__init__()
|
| 116 |
-
self.n_stages = n_stages
|
| 117 |
-
assert self.n_stages >= 0
|
| 118 |
-
assert method in ['nearest','linear','bilinear','trilinear','bicubic','area']
|
| 119 |
-
self.multiplier = multiplier
|
| 120 |
-
self.interpolator = partial(torch.nn.functional.interpolate, mode=method)
|
| 121 |
-
self.remap_output = out_channels is not None
|
| 122 |
-
if self.remap_output:
|
| 123 |
-
print(f'Spatial Rescaler mapping from {in_channels} to {out_channels} channels after resizing.')
|
| 124 |
-
self.channel_mapper = nn.Conv2d(in_channels,out_channels,1,bias=bias)
|
| 125 |
-
|
| 126 |
-
def forward(self,x):
|
| 127 |
-
for stage in range(self.n_stages):
|
| 128 |
-
x = self.interpolator(x, scale_factor=self.multiplier)
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
if self.remap_output:
|
| 132 |
-
x = self.channel_mapper(x)
|
| 133 |
-
return x
|
| 134 |
-
|
| 135 |
-
def encode(self, x):
|
| 136 |
-
return self(x)
|
| 137 |
-
|
| 138 |
-
def disabled_train(self, mode=True):
|
| 139 |
-
"""Overwrite model.train with this function to make sure train/eval mode
|
| 140 |
-
does not change anymore."""
|
| 141 |
-
return self
|
| 142 |
-
|
| 143 |
-
class FrozenT5Embedder(AbstractEncoder):
|
| 144 |
-
"""Uses the T5 transformer encoder for text"""
|
| 145 |
-
def __init__(self, version="google/t5-v1_1-large", device="cuda", max_length=77, freeze=True): # others are google/t5-v1_1-xl and google/t5-v1_1-xxl
|
| 146 |
-
super().__init__()
|
| 147 |
-
self.tokenizer = T5Tokenizer.from_pretrained(version)
|
| 148 |
-
self.transformer = T5EncoderModel.from_pretrained(version)
|
| 149 |
-
self.device = device
|
| 150 |
-
self.max_length = max_length # TODO: typical value?
|
| 151 |
-
if freeze:
|
| 152 |
-
self.freeze()
|
| 153 |
-
|
| 154 |
-
def freeze(self):
|
| 155 |
-
self.transformer = self.transformer.eval()
|
| 156 |
-
#self.train = disabled_train
|
| 157 |
-
for param in self.parameters():
|
| 158 |
-
param.requires_grad = False
|
| 159 |
-
|
| 160 |
-
def forward(self, text):
|
| 161 |
-
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
|
| 162 |
-
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
|
| 163 |
-
tokens = batch_encoding["input_ids"].to(self.device)
|
| 164 |
-
outputs = self.transformer(input_ids=tokens)
|
| 165 |
-
|
| 166 |
-
z = outputs.last_hidden_state
|
| 167 |
-
return z
|
| 168 |
-
|
| 169 |
-
def encode(self, text):
|
| 170 |
-
return self(text)
|
| 171 |
-
|
| 172 |
-
class FrozenFLANEmbedder(AbstractEncoder):
|
| 173 |
-
"""Uses the T5 transformer encoder for text"""
|
| 174 |
-
def __init__(self, version="google/flan-t5-large", device="cuda", max_length=77, freeze=True): # others are google/t5-v1_1-xl and google/t5-v1_1-xxl
|
| 175 |
-
super().__init__()
|
| 176 |
-
self.tokenizer = T5Tokenizer.from_pretrained(version)
|
| 177 |
-
self.transformer = T5EncoderModel.from_pretrained(version)
|
| 178 |
-
self.device = device
|
| 179 |
-
self.max_length = max_length # TODO: typical value?
|
| 180 |
-
if freeze:
|
| 181 |
-
self.freeze()
|
| 182 |
-
|
| 183 |
-
def freeze(self):
|
| 184 |
-
self.transformer = self.transformer.eval()
|
| 185 |
-
#self.train = disabled_train
|
| 186 |
-
for param in self.parameters():
|
| 187 |
-
param.requires_grad = False
|
| 188 |
-
|
| 189 |
-
def forward(self, text):
|
| 190 |
-
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
|
| 191 |
-
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
|
| 192 |
-
tokens = batch_encoding["input_ids"].to(self.device)# tango的flanT5是不定长度的batch,这里做成定长的batch
|
| 193 |
-
outputs = self.transformer(input_ids=tokens)
|
| 194 |
-
|
| 195 |
-
z = outputs.last_hidden_state
|
| 196 |
-
return z
|
| 197 |
-
|
| 198 |
-
def encode(self, text):
|
| 199 |
-
return self(text)
|
| 200 |
-
|
| 201 |
-
class FrozenCLAPEmbedder(AbstractEncoder):
|
| 202 |
-
"""Uses the CLAP transformer encoder for text from microsoft"""
|
| 203 |
-
def __init__(self, weights_path, freeze=True, device="cuda", max_length=77): # clip-vit-base-patch32
|
| 204 |
-
super().__init__()
|
| 205 |
-
|
| 206 |
-
model_state_dict = torch.load(weights_path, map_location=torch.device('cpu'))['model']
|
| 207 |
-
match_params = dict()
|
| 208 |
-
for key in list(model_state_dict.keys()):
|
| 209 |
-
if 'caption_encoder' in key:
|
| 210 |
-
match_params[key.replace('caption_encoder.', '')] = model_state_dict[key]
|
| 211 |
-
|
| 212 |
-
config_as_str = files('ldm').joinpath('modules/encoders/CLAP/config.yml').read_text()
|
| 213 |
-
args = read_config_as_args(config_as_str, is_config_str=True)
|
| 214 |
-
|
| 215 |
-
# To device
|
| 216 |
-
self.tokenizer = AutoTokenizer.from_pretrained(args.text_model) # args.text_model
|
| 217 |
-
self.caption_encoder = TextEncoder(
|
| 218 |
-
args.d_proj, args.text_model, args.transformer_embed_dim
|
| 219 |
-
)
|
| 220 |
-
|
| 221 |
-
self.max_length = max_length
|
| 222 |
-
self.device = device
|
| 223 |
-
if freeze: self.freeze()
|
| 224 |
-
|
| 225 |
-
print(f"{self.caption_encoder.__class__.__name__} comes with {count_params(self.caption_encoder) * 1.e-6:.2f} M params.")
|
| 226 |
-
|
| 227 |
-
def freeze(self):# only freeze
|
| 228 |
-
self.caption_encoder.base = self.caption_encoder.base.eval()
|
| 229 |
-
for param in self.caption_encoder.base.parameters():
|
| 230 |
-
param.requires_grad = False
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
def encode(self, text):
|
| 234 |
-
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
|
| 235 |
-
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
|
| 236 |
-
tokens = batch_encoding["input_ids"].to(self.device)
|
| 237 |
-
|
| 238 |
-
outputs = self.caption_encoder.base(input_ids=tokens)
|
| 239 |
-
z = self.caption_encoder.projection(outputs.last_hidden_state)
|
| 240 |
-
return z
|
| 241 |
-
|
| 242 |
-
class FrozenLAIONCLAPEmbedder(AbstractEncoder):
|
| 243 |
-
"""Uses the CLAP transformer encoder for text from LAION-AI"""
|
| 244 |
-
def __init__(self, weights_path, freeze=True,sentence=False, device="cuda", max_length=77): # clip-vit-base-patch32
|
| 245 |
-
super().__init__()
|
| 246 |
-
# To device
|
| 247 |
-
from transformers import RobertaTokenizer
|
| 248 |
-
from ldm.modules.encoders.open_clap import create_model
|
| 249 |
-
self.sentence = sentence
|
| 250 |
-
|
| 251 |
-
model, model_cfg = create_model(
|
| 252 |
-
'HTSAT-tiny',
|
| 253 |
-
'roberta',
|
| 254 |
-
weights_path,
|
| 255 |
-
enable_fusion=True,
|
| 256 |
-
fusion_type='aff_2d'
|
| 257 |
-
)
|
| 258 |
-
|
| 259 |
-
del model.audio_branch, model.audio_transform, model.audio_projection
|
| 260 |
-
self.tokenizer = RobertaTokenizer.from_pretrained('roberta-base')
|
| 261 |
-
self.model = model
|
| 262 |
-
|
| 263 |
-
self.max_length = max_length
|
| 264 |
-
self.device = device
|
| 265 |
-
self.to(self.device)
|
| 266 |
-
if freeze: self.freeze()
|
| 267 |
-
|
| 268 |
-
param_num = sum(p.numel() for p in model.parameters())
|
| 269 |
-
print(f'{self.model.__class__.__name__} comes with: {param_num / 1e6:.3f} M params.')
|
| 270 |
-
|
| 271 |
-
def to(self,device):
|
| 272 |
-
self.model.to(device=device)
|
| 273 |
-
self.device=device
|
| 274 |
-
|
| 275 |
-
def freeze(self):
|
| 276 |
-
self.model = self.model.eval()
|
| 277 |
-
for param in self.model.parameters():
|
| 278 |
-
param.requires_grad = False
|
| 279 |
-
|
| 280 |
-
def encode(self, text):
|
| 281 |
-
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, padding="max_length", return_tensors="pt").to(self.device)
|
| 282 |
-
if self.sentence:
|
| 283 |
-
z = self.model.get_text_embedding(batch_encoding).unsqueeze(1)
|
| 284 |
-
else:
|
| 285 |
-
# text_branch is roberta
|
| 286 |
-
outputs = self.model.text_branch(input_ids=batch_encoding["input_ids"].to(self.device), attention_mask=batch_encoding["attention_mask"].to(self.device))
|
| 287 |
-
z = self.model.text_projection(outputs.last_hidden_state)
|
| 288 |
-
|
| 289 |
-
return z
|
| 290 |
-
|
| 291 |
-
class FrozenLAIONCLAPSetenceEmbedder(AbstractEncoder):
|
| 292 |
-
"""Uses the CLAP transformer encoder for text from LAION-AI"""
|
| 293 |
-
def __init__(self, weights_path, freeze=True, device="cuda", max_length=77): # clip-vit-base-patch32
|
| 294 |
-
super().__init__()
|
| 295 |
-
# To device
|
| 296 |
-
from transformers import RobertaTokenizer
|
| 297 |
-
from ldm.modules.encoders.open_clap import create_model
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
model, model_cfg = create_model(
|
| 301 |
-
'HTSAT-tiny',
|
| 302 |
-
'roberta',
|
| 303 |
-
weights_path,
|
| 304 |
-
enable_fusion=True,
|
| 305 |
-
fusion_type='aff_2d'
|
| 306 |
-
)
|
| 307 |
-
|
| 308 |
-
del model.audio_branch, model.audio_transform, model.audio_projection
|
| 309 |
-
self.tokenize = RobertaTokenizer.from_pretrained('roberta-base')
|
| 310 |
-
self.model = model
|
| 311 |
-
|
| 312 |
-
self.max_length = max_length
|
| 313 |
-
self.device = device
|
| 314 |
-
if freeze: self.freeze()
|
| 315 |
-
|
| 316 |
-
param_num = sum(p.numel() for p in model.parameters())
|
| 317 |
-
print(f'{self.model.__class__.__name__} comes with: {param_num / 1e+6:.3f} M params.')
|
| 318 |
-
|
| 319 |
-
def freeze(self):
|
| 320 |
-
self.model = self.model.eval()
|
| 321 |
-
for param in self.model.parameters():
|
| 322 |
-
param.requires_grad = False
|
| 323 |
-
|
| 324 |
-
def tokenizer(self, text):
|
| 325 |
-
result = self.tokenize(
|
| 326 |
-
text,
|
| 327 |
-
padding="max_length",
|
| 328 |
-
truncation=True,
|
| 329 |
-
max_length=512,
|
| 330 |
-
return_tensors="pt",
|
| 331 |
-
)
|
| 332 |
-
return result
|
| 333 |
-
|
| 334 |
-
def encode(self, text):
|
| 335 |
-
with torch.no_grad():
|
| 336 |
-
# the 'fusion' truncate mode can be changed to 'rand_trunc' if run in unfusion mode
|
| 337 |
-
text_data = self.tokenizer(text)# input_ids shape:(b,512)
|
| 338 |
-
embed = self.model.get_text_embedding(text_data)
|
| 339 |
-
embed = embed.unsqueeze(1)# (b,1,512)
|
| 340 |
-
return embed
|
| 341 |
-
|
| 342 |
-
class FrozenCLAPOrderEmbedder2(AbstractEncoder):# 每个object后面都加上|
|
| 343 |
-
"""Uses the CLAP transformer encoder for text (from huggingface)"""
|
| 344 |
-
def __init__(self, weights_path, freeze=True, device="cuda"):
|
| 345 |
-
super().__init__()
|
| 346 |
-
|
| 347 |
-
model_state_dict = torch.load(weights_path, map_location=torch.device('cpu'))['model']
|
| 348 |
-
match_params = dict()
|
| 349 |
-
for key in list(model_state_dict.keys()):
|
| 350 |
-
if 'caption_encoder' in key:
|
| 351 |
-
match_params[key.replace('caption_encoder.', '')] = model_state_dict[key]
|
| 352 |
-
|
| 353 |
-
config_as_str = files('ldm').joinpath('modules/encoders/CLAP/config.yml').read_text()
|
| 354 |
-
args = read_config_as_args(config_as_str, is_config_str=True)
|
| 355 |
-
|
| 356 |
-
# To device
|
| 357 |
-
self.tokenizer = AutoTokenizer.from_pretrained(args.text_model) # args.text_model
|
| 358 |
-
self.caption_encoder = TextEncoder(
|
| 359 |
-
args.d_proj, args.text_model, args.transformer_embed_dim
|
| 360 |
-
).to(device)
|
| 361 |
-
self.max_objs = 10
|
| 362 |
-
self.max_length = args.text_len
|
| 363 |
-
self.device = device
|
| 364 |
-
self.order_to_label = self.build_order_dict()
|
| 365 |
-
if freeze: self.freeze()
|
| 366 |
-
|
| 367 |
-
print(f"{self.caption_encoder.__class__.__name__} comes with {count_params(self.caption_encoder) * 1.e-6:.2f} M params.")
|
| 368 |
-
|
| 369 |
-
def freeze(self):
|
| 370 |
-
self.caption_encoder.base = self.caption_encoder.base.eval()
|
| 371 |
-
for param in self.caption_encoder.base.parameters():
|
| 372 |
-
param.requires_grad = False
|
| 373 |
-
|
| 374 |
-
def build_order_dict(self):
|
| 375 |
-
order2label = {}
|
| 376 |
-
num_orders = 10
|
| 377 |
-
time_stamps = ['start','mid','end']
|
| 378 |
-
time_num = len(time_stamps)
|
| 379 |
-
for i in range(num_orders):
|
| 380 |
-
for j,time_stamp in enumerate(time_stamps):
|
| 381 |
-
order2label[f'order {i} {time_stamp}'] = i * time_num + j
|
| 382 |
-
order2label['all'] = num_orders*len(time_stamps)
|
| 383 |
-
order2label['unknown'] = num_orders*len(time_stamps) + 1
|
| 384 |
-
return order2label
|
| 385 |
-
|
| 386 |
-
def encode(self, text):
|
| 387 |
-
obj_list,orders_list = [],[]
|
| 388 |
-
for raw in text:
|
| 389 |
-
splits = raw.split('@') # raw example: '<man speaking& order 1 start>@<man speaking& order 2 mid>@<idle engine& all>'
|
| 390 |
-
objs = []
|
| 391 |
-
orders = []
|
| 392 |
-
for split in splits:# <obj& order>
|
| 393 |
-
split = split[1:-1]
|
| 394 |
-
obj,order = split.split('&')
|
| 395 |
-
objs.append(obj.strip())
|
| 396 |
-
try:
|
| 397 |
-
orders.append(self.order_to_label[order.strip()])
|
| 398 |
-
except:
|
| 399 |
-
print(order.strip(),raw)
|
| 400 |
-
assert len(objs) == len(orders)
|
| 401 |
-
obj_list.append(' | '.join(objs)+' |')# '|' after every word
|
| 402 |
-
orders_list.append(orders)
|
| 403 |
-
batch_encoding = self.tokenizer(obj_list, truncation=True, max_length=self.max_length, return_length=True,
|
| 404 |
-
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
|
| 405 |
-
tokens = batch_encoding["input_ids"]
|
| 406 |
-
|
| 407 |
-
outputs = self.caption_encoder.base(input_ids=tokens.to(self.device))
|
| 408 |
-
z = self.caption_encoder.projection(outputs.last_hidden_state)
|
| 409 |
-
return {'token_embedding':z,'token_ids':tokens,'orders':orders_list}
|
| 410 |
-
|
| 411 |
-
class FrozenCLAPOrderEmbedder3(AbstractEncoder):# 相比于FrozenCLAPOrderEmbedder2移除了projection,使用正确的max_len,去除了order仅保留时间。
|
| 412 |
-
"""Uses the CLAP transformer encoder for text (from huggingface)"""
|
| 413 |
-
def __init__(self, weights_path, freeze=True, device="cuda"): # clip-vit-base-patch32
|
| 414 |
-
super().__init__()
|
| 415 |
-
|
| 416 |
-
model_state_dict = torch.load(weights_path, map_location=torch.device('cpu'))['model']
|
| 417 |
-
match_params = dict()
|
| 418 |
-
for key in list(model_state_dict.keys()):
|
| 419 |
-
if 'caption_encoder' in key:
|
| 420 |
-
match_params[key.replace('caption_encoder.', '')] = model_state_dict[key]
|
| 421 |
-
|
| 422 |
-
config_as_str = files('ldm').joinpath('modules/encoders/CLAP/config.yml').read_text()
|
| 423 |
-
args = read_config_as_args(config_as_str, is_config_str=True)
|
| 424 |
-
|
| 425 |
-
# To device
|
| 426 |
-
self.tokenizer = AutoTokenizer.from_pretrained(args.text_model) # args.text_model
|
| 427 |
-
self.caption_encoder = TextEncoder(
|
| 428 |
-
args.d_proj, args.text_model, args.transformer_embed_dim
|
| 429 |
-
).to(device)
|
| 430 |
-
self.max_objs = 10
|
| 431 |
-
self.max_length = args.text_len
|
| 432 |
-
self.device = device
|
| 433 |
-
self.order_to_label = self.build_order_dict()
|
| 434 |
-
if freeze: self.freeze()
|
| 435 |
-
|
| 436 |
-
print(f"{self.caption_encoder.__class__.__name__} comes with {count_params(self.caption_encoder) * 1.e-6:.2f} M params.")
|
| 437 |
-
|
| 438 |
-
def freeze(self):
|
| 439 |
-
self.caption_encoder.base = self.caption_encoder.base.eval()
|
| 440 |
-
for param in self.caption_encoder.base.parameters():
|
| 441 |
-
param.requires_grad = False
|
| 442 |
-
|
| 443 |
-
def build_order_dict(self):
|
| 444 |
-
order2label = {}
|
| 445 |
-
time_stamps = ['all','start','mid','end']
|
| 446 |
-
for i,time_stamp in enumerate(time_stamps):
|
| 447 |
-
order2label[time_stamp] = i
|
| 448 |
-
return order2label
|
| 449 |
-
|
| 450 |
-
def encode(self, text):
|
| 451 |
-
obj_list,orders_list = [],[]
|
| 452 |
-
for raw in text:
|
| 453 |
-
splits = raw.split('@') # raw example: '<man speaking& order 1 start>@<man speaking& order 2 mid>@<idle engine& all>'
|
| 454 |
-
objs = []
|
| 455 |
-
orders = []
|
| 456 |
-
for split in splits:# <obj& order>
|
| 457 |
-
split = split[1:-1]
|
| 458 |
-
obj,order = split.split('&')
|
| 459 |
-
objs.append(obj.strip())
|
| 460 |
-
try:
|
| 461 |
-
orders.append(self.order_to_label[order.strip()])
|
| 462 |
-
except:
|
| 463 |
-
print(order.strip(),raw)
|
| 464 |
-
assert len(objs) == len(orders)
|
| 465 |
-
obj_list.append(' | '.join(objs)+' |')# '|' after every word
|
| 466 |
-
orders_list.append(orders)
|
| 467 |
-
batch_encoding = self.tokenizer(obj_list, truncation=True, max_length=self.max_length, return_length=True,
|
| 468 |
-
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
|
| 469 |
-
tokens = batch_encoding["input_ids"]
|
| 470 |
-
attn_mask = batch_encoding["attention_mask"]
|
| 471 |
-
outputs = self.caption_encoder.base(input_ids=tokens.to(self.device))
|
| 472 |
-
z = outputs.last_hidden_state
|
| 473 |
-
return {'token_embedding':z,'token_ids':tokens,'orders':orders_list,'attn_mask':attn_mask}
|
| 474 |
-
|
| 475 |
-
class FrozenCLAPT5Embedder(AbstractEncoder):
|
| 476 |
-
"""Uses the CLAP transformer encoder for text from microsoft"""
|
| 477 |
-
def __init__(self, weights_path,t5version="google/flan-t5-large", freeze=True, device="cuda", max_length=77): # clip-vit-base-patch32
|
| 478 |
-
super().__init__()
|
| 479 |
-
|
| 480 |
-
model_state_dict = torch.load(weights_path, map_location=torch.device('cpu'))['model']
|
| 481 |
-
match_params = dict()
|
| 482 |
-
for key in list(model_state_dict.keys()):
|
| 483 |
-
if 'caption_encoder' in key:
|
| 484 |
-
match_params[key.replace('caption_encoder.', '')] = model_state_dict[key]
|
| 485 |
-
|
| 486 |
-
config_as_str = files('ldm').joinpath('modules/encoders/CLAP/config.yml').read_text()
|
| 487 |
-
args = read_config_as_args(config_as_str, is_config_str=True)
|
| 488 |
-
|
| 489 |
-
self.clap_tokenizer = AutoTokenizer.from_pretrained(args.text_model) # args.text_model
|
| 490 |
-
self.caption_encoder = TextEncoder(
|
| 491 |
-
args.d_proj, args.text_model, args.transformer_embed_dim
|
| 492 |
-
)
|
| 493 |
-
|
| 494 |
-
self.t5_tokenizer = T5Tokenizer.from_pretrained(t5version)
|
| 495 |
-
self.t5_transformer = T5EncoderModel.from_pretrained(t5version)
|
| 496 |
-
|
| 497 |
-
self.max_length = max_length
|
| 498 |
-
self.to(device=device)
|
| 499 |
-
if freeze: self.freeze()
|
| 500 |
-
|
| 501 |
-
print(f"{self.caption_encoder.__class__.__name__} comes with {count_params(self.caption_encoder) * 1.e-6:.2f} M params.")
|
| 502 |
-
|
| 503 |
-
def freeze(self):
|
| 504 |
-
self.caption_encoder = self.caption_encoder.eval()
|
| 505 |
-
for param in self.caption_encoder.parameters():
|
| 506 |
-
param.requires_grad = False
|
| 507 |
-
|
| 508 |
-
def to(self,device):
|
| 509 |
-
self.t5_transformer.to(device)
|
| 510 |
-
self.caption_encoder.to(device)
|
| 511 |
-
self.device = device
|
| 512 |
-
|
| 513 |
-
def encode(self, text):
|
| 514 |
-
ori_caption = text['ori_caption']
|
| 515 |
-
struct_caption = text['struct_caption']
|
| 516 |
-
# print(ori_caption,struct_caption)
|
| 517 |
-
clap_batch_encoding = self.clap_tokenizer(ori_caption, truncation=True, max_length=self.max_length, return_length=True,
|
| 518 |
-
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
|
| 519 |
-
ori_tokens = clap_batch_encoding["input_ids"].to(self.device)
|
| 520 |
-
t5_batch_encoding = self.t5_tokenizer(struct_caption, truncation=True, max_length=self.max_length, return_length=True,
|
| 521 |
-
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
|
| 522 |
-
struct_tokens = t5_batch_encoding["input_ids"].to(self.device)
|
| 523 |
-
outputs = self.caption_encoder.base(input_ids=ori_tokens)
|
| 524 |
-
z = self.caption_encoder.projection(outputs.last_hidden_state)
|
| 525 |
-
z2 = self.t5_transformer(input_ids=struct_tokens).last_hidden_state
|
| 526 |
-
return torch.concat([z,z2],dim=1)
|
| 527 |
-
|
| 528 |
-
|
| 529 |
-
class FrozenCLAPFLANEmbedder(AbstractEncoder):
|
| 530 |
-
"""Uses the CLAP transformer encoder for text from microsoft"""
|
| 531 |
-
def __init__(self, weights_path,t5version="
|
| 532 |
-
super().__init__()
|
| 533 |
-
|
| 534 |
-
model_state_dict = torch.load(weights_path, map_location=torch.device('cpu'))['model']
|
| 535 |
-
match_params = dict()
|
| 536 |
-
for key in list(model_state_dict.keys()):
|
| 537 |
-
if 'caption_encoder' in key:
|
| 538 |
-
match_params[key.replace('caption_encoder.', '')] = model_state_dict[key]
|
| 539 |
-
|
| 540 |
-
config_as_str = files('ldm').joinpath('modules/encoders/CLAP/config.yaml').read_text()
|
| 541 |
-
args = read_config_as_args(config_as_str, is_config_str=True)
|
| 542 |
-
|
| 543 |
-
self.clap_tokenizer = AutoTokenizer.from_pretrained(args.text_model) # args.text_model
|
| 544 |
-
self.caption_encoder = TextEncoder(
|
| 545 |
-
args.d_proj, args.text_model, args.transformer_embed_dim
|
| 546 |
-
)
|
| 547 |
-
|
| 548 |
-
self.t5_tokenizer = T5Tokenizer.from_pretrained(t5version)
|
| 549 |
-
self.t5_transformer = T5EncoderModel.from_pretrained(t5version)
|
| 550 |
-
|
| 551 |
-
self.max_length = max_length
|
| 552 |
-
# self.to(device=device)
|
| 553 |
-
if freeze: self.freeze()
|
| 554 |
-
|
| 555 |
-
print(f"{self.caption_encoder.__class__.__name__} comes with {count_params(self.caption_encoder) * 1.e-6:.2f} M params.")
|
| 556 |
-
|
| 557 |
-
def freeze(self):
|
| 558 |
-
self.caption_encoder = self.caption_encoder.eval()
|
| 559 |
-
for param in self.caption_encoder.parameters():
|
| 560 |
-
param.requires_grad = False
|
| 561 |
-
|
| 562 |
-
def to(self,device):
|
| 563 |
-
self.t5_transformer.to(device)
|
| 564 |
-
self.caption_encoder.to(device)
|
| 565 |
-
self.device = device
|
| 566 |
-
|
| 567 |
-
def encode(self, text):
|
| 568 |
-
ori_caption = text['ori_caption']
|
| 569 |
-
struct_caption = text['struct_caption']
|
| 570 |
-
# print(ori_caption,struct_caption)
|
| 571 |
-
clap_batch_encoding = self.clap_tokenizer(ori_caption, truncation=True, max_length=self.max_length, return_length=True,
|
| 572 |
-
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
|
| 573 |
-
ori_tokens = clap_batch_encoding["input_ids"].to(self.device)
|
| 574 |
-
t5_batch_encoding = self.t5_tokenizer(struct_caption, truncation=True, max_length=self.max_length, return_length=True,
|
| 575 |
-
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
|
| 576 |
-
struct_tokens = t5_batch_encoding["input_ids"].to(self.device)
|
| 577 |
-
# if self.caption_encoder.device != ori_tokens.device:
|
| 578 |
-
# self.to(self.device)
|
| 579 |
-
outputs = self.caption_encoder.base(input_ids=ori_tokens)
|
| 580 |
-
z = self.caption_encoder.projection(outputs.last_hidden_state)
|
| 581 |
-
z2 = self.t5_transformer(input_ids=struct_tokens).last_hidden_state
|
| 582 |
-
return torch.concat([z,z2],dim=1)
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
from functools import partial
|
| 4 |
+
from ldm.modules.x_transformer import Encoder, TransformerWrapper # TODO: can we directly rely on lucidrains code and simply add this as a reuirement? --> test
|
| 5 |
+
from torch.utils.checkpoint import checkpoint
|
| 6 |
+
from transformers import T5Tokenizer, T5EncoderModel, CLIPTokenizer, CLIPTextModel, AutoTokenizer
|
| 7 |
+
from importlib_resources import files
|
| 8 |
+
from ldm.modules.encoders.CLAP.utils import read_config_as_args
|
| 9 |
+
from ldm.modules.encoders.CLAP.clap import TextEncoder
|
| 10 |
+
import copy
|
| 11 |
+
from ldm.util import default, count_params
|
| 12 |
+
import pytorch_lightning as pl
|
| 13 |
+
|
| 14 |
+
class AbstractEncoder(pl.LightningModule):
|
| 15 |
+
def __init__(self):
|
| 16 |
+
super().__init__()
|
| 17 |
+
|
| 18 |
+
def encode(self, *args, **kwargs):
|
| 19 |
+
raise NotImplementedError
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
class ClassEmbedder(nn.Module):
|
| 23 |
+
def __init__(self, embed_dim, n_classes=1000, key='class'):
|
| 24 |
+
super().__init__()
|
| 25 |
+
self.key = key
|
| 26 |
+
self.embedding = nn.Embedding(n_classes, embed_dim)
|
| 27 |
+
|
| 28 |
+
def forward(self, batch, key=None):
|
| 29 |
+
if key is None:
|
| 30 |
+
key = self.key
|
| 31 |
+
# this is for use in crossattn
|
| 32 |
+
c = batch[key][:, None]# (bsz,1)
|
| 33 |
+
c = self.embedding(c)
|
| 34 |
+
return c
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
class TransformerEmbedder(AbstractEncoder):
|
| 38 |
+
"""Some transformer encoder layers"""
|
| 39 |
+
def __init__(self, n_embed, n_layer, vocab_size, max_seq_len=77, device="cuda"):
|
| 40 |
+
super().__init__()
|
| 41 |
+
self.device = device
|
| 42 |
+
self.transformer = TransformerWrapper(num_tokens=vocab_size, max_seq_len=max_seq_len,
|
| 43 |
+
attn_layers=Encoder(dim=n_embed, depth=n_layer))
|
| 44 |
+
|
| 45 |
+
def forward(self, tokens):
|
| 46 |
+
tokens = tokens.to(self.device) # meh
|
| 47 |
+
z = self.transformer(tokens, return_embeddings=True)
|
| 48 |
+
return z
|
| 49 |
+
|
| 50 |
+
def encode(self, x):
|
| 51 |
+
return self(x)
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
class BERTTokenizer(AbstractEncoder):
|
| 55 |
+
""" Uses a pretrained BERT tokenizer by huggingface. Vocab size: 30522 (?)"""
|
| 56 |
+
def __init__(self, device="cuda", vq_interface=True, max_length=77):
|
| 57 |
+
super().__init__()
|
| 58 |
+
from transformers import BertTokenizerFast # TODO: add to reuquirements
|
| 59 |
+
self.tokenizer = BertTokenizerFast.from_pretrained("bert-base-uncased")
|
| 60 |
+
self.device = device
|
| 61 |
+
self.vq_interface = vq_interface
|
| 62 |
+
self.max_length = max_length
|
| 63 |
+
|
| 64 |
+
def forward(self, text):
|
| 65 |
+
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
|
| 66 |
+
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
|
| 67 |
+
tokens = batch_encoding["input_ids"].to(self.device)
|
| 68 |
+
return tokens
|
| 69 |
+
|
| 70 |
+
@torch.no_grad()
|
| 71 |
+
def encode(self, text):
|
| 72 |
+
tokens = self(text)
|
| 73 |
+
if not self.vq_interface:
|
| 74 |
+
return tokens
|
| 75 |
+
return None, None, [None, None, tokens]
|
| 76 |
+
|
| 77 |
+
def decode(self, text):
|
| 78 |
+
return text
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
class BERTEmbedder(AbstractEncoder):# 这里不是用的pretrained bert,是用的transformers的BertTokenizer加自定义的TransformerWrapper
|
| 82 |
+
"""Uses the BERT tokenizr model and add some transformer encoder layers"""
|
| 83 |
+
def __init__(self, n_embed, n_layer, vocab_size=30522, max_seq_len=77,
|
| 84 |
+
device="cuda",use_tokenizer=True, embedding_dropout=0.0):
|
| 85 |
+
super().__init__()
|
| 86 |
+
self.use_tknz_fn = use_tokenizer
|
| 87 |
+
if self.use_tknz_fn:
|
| 88 |
+
self.tknz_fn = BERTTokenizer(vq_interface=False, max_length=max_seq_len)
|
| 89 |
+
self.device = device
|
| 90 |
+
self.transformer = TransformerWrapper(num_tokens=vocab_size, max_seq_len=max_seq_len,
|
| 91 |
+
attn_layers=Encoder(dim=n_embed, depth=n_layer),
|
| 92 |
+
emb_dropout=embedding_dropout)
|
| 93 |
+
|
| 94 |
+
def forward(self, text):
|
| 95 |
+
if self.use_tknz_fn:
|
| 96 |
+
tokens = self.tknz_fn(text)#.to(self.device)
|
| 97 |
+
else:
|
| 98 |
+
tokens = text
|
| 99 |
+
z = self.transformer(tokens, return_embeddings=True)
|
| 100 |
+
return z
|
| 101 |
+
|
| 102 |
+
def encode(self, text):
|
| 103 |
+
# output of length 77
|
| 104 |
+
return self(text)
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
class SpatialRescaler(nn.Module):
|
| 108 |
+
def __init__(self,
|
| 109 |
+
n_stages=1,
|
| 110 |
+
method='bilinear',
|
| 111 |
+
multiplier=0.5,
|
| 112 |
+
in_channels=3,
|
| 113 |
+
out_channels=None,
|
| 114 |
+
bias=False):
|
| 115 |
+
super().__init__()
|
| 116 |
+
self.n_stages = n_stages
|
| 117 |
+
assert self.n_stages >= 0
|
| 118 |
+
assert method in ['nearest','linear','bilinear','trilinear','bicubic','area']
|
| 119 |
+
self.multiplier = multiplier
|
| 120 |
+
self.interpolator = partial(torch.nn.functional.interpolate, mode=method)
|
| 121 |
+
self.remap_output = out_channels is not None
|
| 122 |
+
if self.remap_output:
|
| 123 |
+
print(f'Spatial Rescaler mapping from {in_channels} to {out_channels} channels after resizing.')
|
| 124 |
+
self.channel_mapper = nn.Conv2d(in_channels,out_channels,1,bias=bias)
|
| 125 |
+
|
| 126 |
+
def forward(self,x):
|
| 127 |
+
for stage in range(self.n_stages):
|
| 128 |
+
x = self.interpolator(x, scale_factor=self.multiplier)
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
if self.remap_output:
|
| 132 |
+
x = self.channel_mapper(x)
|
| 133 |
+
return x
|
| 134 |
+
|
| 135 |
+
def encode(self, x):
|
| 136 |
+
return self(x)
|
| 137 |
+
|
| 138 |
+
def disabled_train(self, mode=True):
|
| 139 |
+
"""Overwrite model.train with this function to make sure train/eval mode
|
| 140 |
+
does not change anymore."""
|
| 141 |
+
return self
|
| 142 |
+
|
| 143 |
+
class FrozenT5Embedder(AbstractEncoder):
|
| 144 |
+
"""Uses the T5 transformer encoder for text"""
|
| 145 |
+
def __init__(self, version="google/t5-v1_1-large", device="cuda", max_length=77, freeze=True): # others are google/t5-v1_1-xl and google/t5-v1_1-xxl
|
| 146 |
+
super().__init__()
|
| 147 |
+
self.tokenizer = T5Tokenizer.from_pretrained(version)
|
| 148 |
+
self.transformer = T5EncoderModel.from_pretrained(version)
|
| 149 |
+
self.device = device
|
| 150 |
+
self.max_length = max_length # TODO: typical value?
|
| 151 |
+
if freeze:
|
| 152 |
+
self.freeze()
|
| 153 |
+
|
| 154 |
+
def freeze(self):
|
| 155 |
+
self.transformer = self.transformer.eval()
|
| 156 |
+
#self.train = disabled_train
|
| 157 |
+
for param in self.parameters():
|
| 158 |
+
param.requires_grad = False
|
| 159 |
+
|
| 160 |
+
def forward(self, text):
|
| 161 |
+
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
|
| 162 |
+
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
|
| 163 |
+
tokens = batch_encoding["input_ids"].to(self.device)
|
| 164 |
+
outputs = self.transformer(input_ids=tokens)
|
| 165 |
+
|
| 166 |
+
z = outputs.last_hidden_state
|
| 167 |
+
return z
|
| 168 |
+
|
| 169 |
+
def encode(self, text):
|
| 170 |
+
return self(text)
|
| 171 |
+
|
| 172 |
+
class FrozenFLANEmbedder(AbstractEncoder):
|
| 173 |
+
"""Uses the T5 transformer encoder for text"""
|
| 174 |
+
def __init__(self, version="google/flan-t5-large", device="cuda", max_length=77, freeze=True): # others are google/t5-v1_1-xl and google/t5-v1_1-xxl
|
| 175 |
+
super().__init__()
|
| 176 |
+
self.tokenizer = T5Tokenizer.from_pretrained(version)
|
| 177 |
+
self.transformer = T5EncoderModel.from_pretrained(version)
|
| 178 |
+
self.device = device
|
| 179 |
+
self.max_length = max_length # TODO: typical value?
|
| 180 |
+
if freeze:
|
| 181 |
+
self.freeze()
|
| 182 |
+
|
| 183 |
+
def freeze(self):
|
| 184 |
+
self.transformer = self.transformer.eval()
|
| 185 |
+
#self.train = disabled_train
|
| 186 |
+
for param in self.parameters():
|
| 187 |
+
param.requires_grad = False
|
| 188 |
+
|
| 189 |
+
def forward(self, text):
|
| 190 |
+
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
|
| 191 |
+
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
|
| 192 |
+
tokens = batch_encoding["input_ids"].to(self.device)# tango的flanT5是不定长度的batch,这里做成定长的batch
|
| 193 |
+
outputs = self.transformer(input_ids=tokens)
|
| 194 |
+
|
| 195 |
+
z = outputs.last_hidden_state
|
| 196 |
+
return z
|
| 197 |
+
|
| 198 |
+
def encode(self, text):
|
| 199 |
+
return self(text)
|
| 200 |
+
|
| 201 |
+
class FrozenCLAPEmbedder(AbstractEncoder):
|
| 202 |
+
"""Uses the CLAP transformer encoder for text from microsoft"""
|
| 203 |
+
def __init__(self, weights_path, freeze=True, device="cuda", max_length=77): # clip-vit-base-patch32
|
| 204 |
+
super().__init__()
|
| 205 |
+
|
| 206 |
+
model_state_dict = torch.load(weights_path, map_location=torch.device('cpu'))['model']
|
| 207 |
+
match_params = dict()
|
| 208 |
+
for key in list(model_state_dict.keys()):
|
| 209 |
+
if 'caption_encoder' in key:
|
| 210 |
+
match_params[key.replace('caption_encoder.', '')] = model_state_dict[key]
|
| 211 |
+
|
| 212 |
+
config_as_str = files('ldm').joinpath('modules/encoders/CLAP/config.yml').read_text()
|
| 213 |
+
args = read_config_as_args(config_as_str, is_config_str=True)
|
| 214 |
+
|
| 215 |
+
# To device
|
| 216 |
+
self.tokenizer = AutoTokenizer.from_pretrained(args.text_model) # args.text_model
|
| 217 |
+
self.caption_encoder = TextEncoder(
|
| 218 |
+
args.d_proj, args.text_model, args.transformer_embed_dim
|
| 219 |
+
)
|
| 220 |
+
|
| 221 |
+
self.max_length = max_length
|
| 222 |
+
self.device = device
|
| 223 |
+
if freeze: self.freeze()
|
| 224 |
+
|
| 225 |
+
print(f"{self.caption_encoder.__class__.__name__} comes with {count_params(self.caption_encoder) * 1.e-6:.2f} M params.")
|
| 226 |
+
|
| 227 |
+
def freeze(self):# only freeze
|
| 228 |
+
self.caption_encoder.base = self.caption_encoder.base.eval()
|
| 229 |
+
for param in self.caption_encoder.base.parameters():
|
| 230 |
+
param.requires_grad = False
|
| 231 |
+
|
| 232 |
+
|
| 233 |
+
def encode(self, text):
|
| 234 |
+
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
|
| 235 |
+
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
|
| 236 |
+
tokens = batch_encoding["input_ids"].to(self.device)
|
| 237 |
+
|
| 238 |
+
outputs = self.caption_encoder.base(input_ids=tokens)
|
| 239 |
+
z = self.caption_encoder.projection(outputs.last_hidden_state)
|
| 240 |
+
return z
|
| 241 |
+
|
| 242 |
+
class FrozenLAIONCLAPEmbedder(AbstractEncoder):
|
| 243 |
+
"""Uses the CLAP transformer encoder for text from LAION-AI"""
|
| 244 |
+
def __init__(self, weights_path, freeze=True,sentence=False, device="cuda", max_length=77): # clip-vit-base-patch32
|
| 245 |
+
super().__init__()
|
| 246 |
+
# To device
|
| 247 |
+
from transformers import RobertaTokenizer
|
| 248 |
+
from ldm.modules.encoders.open_clap import create_model
|
| 249 |
+
self.sentence = sentence
|
| 250 |
+
|
| 251 |
+
model, model_cfg = create_model(
|
| 252 |
+
'HTSAT-tiny',
|
| 253 |
+
'roberta',
|
| 254 |
+
weights_path,
|
| 255 |
+
enable_fusion=True,
|
| 256 |
+
fusion_type='aff_2d'
|
| 257 |
+
)
|
| 258 |
+
|
| 259 |
+
del model.audio_branch, model.audio_transform, model.audio_projection
|
| 260 |
+
self.tokenizer = RobertaTokenizer.from_pretrained('roberta-base')
|
| 261 |
+
self.model = model
|
| 262 |
+
|
| 263 |
+
self.max_length = max_length
|
| 264 |
+
self.device = device
|
| 265 |
+
self.to(self.device)
|
| 266 |
+
if freeze: self.freeze()
|
| 267 |
+
|
| 268 |
+
param_num = sum(p.numel() for p in model.parameters())
|
| 269 |
+
print(f'{self.model.__class__.__name__} comes with: {param_num / 1e6:.3f} M params.')
|
| 270 |
+
|
| 271 |
+
def to(self,device):
|
| 272 |
+
self.model.to(device=device)
|
| 273 |
+
self.device=device
|
| 274 |
+
|
| 275 |
+
def freeze(self):
|
| 276 |
+
self.model = self.model.eval()
|
| 277 |
+
for param in self.model.parameters():
|
| 278 |
+
param.requires_grad = False
|
| 279 |
+
|
| 280 |
+
def encode(self, text):
|
| 281 |
+
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, padding="max_length", return_tensors="pt").to(self.device)
|
| 282 |
+
if self.sentence:
|
| 283 |
+
z = self.model.get_text_embedding(batch_encoding).unsqueeze(1)
|
| 284 |
+
else:
|
| 285 |
+
# text_branch is roberta
|
| 286 |
+
outputs = self.model.text_branch(input_ids=batch_encoding["input_ids"].to(self.device), attention_mask=batch_encoding["attention_mask"].to(self.device))
|
| 287 |
+
z = self.model.text_projection(outputs.last_hidden_state)
|
| 288 |
+
|
| 289 |
+
return z
|
| 290 |
+
|
| 291 |
+
class FrozenLAIONCLAPSetenceEmbedder(AbstractEncoder):
|
| 292 |
+
"""Uses the CLAP transformer encoder for text from LAION-AI"""
|
| 293 |
+
def __init__(self, weights_path, freeze=True, device="cuda", max_length=77): # clip-vit-base-patch32
|
| 294 |
+
super().__init__()
|
| 295 |
+
# To device
|
| 296 |
+
from transformers import RobertaTokenizer
|
| 297 |
+
from ldm.modules.encoders.open_clap import create_model
|
| 298 |
+
|
| 299 |
+
|
| 300 |
+
model, model_cfg = create_model(
|
| 301 |
+
'HTSAT-tiny',
|
| 302 |
+
'roberta',
|
| 303 |
+
weights_path,
|
| 304 |
+
enable_fusion=True,
|
| 305 |
+
fusion_type='aff_2d'
|
| 306 |
+
)
|
| 307 |
+
|
| 308 |
+
del model.audio_branch, model.audio_transform, model.audio_projection
|
| 309 |
+
self.tokenize = RobertaTokenizer.from_pretrained('roberta-base')
|
| 310 |
+
self.model = model
|
| 311 |
+
|
| 312 |
+
self.max_length = max_length
|
| 313 |
+
self.device = device
|
| 314 |
+
if freeze: self.freeze()
|
| 315 |
+
|
| 316 |
+
param_num = sum(p.numel() for p in model.parameters())
|
| 317 |
+
print(f'{self.model.__class__.__name__} comes with: {param_num / 1e+6:.3f} M params.')
|
| 318 |
+
|
| 319 |
+
def freeze(self):
|
| 320 |
+
self.model = self.model.eval()
|
| 321 |
+
for param in self.model.parameters():
|
| 322 |
+
param.requires_grad = False
|
| 323 |
+
|
| 324 |
+
def tokenizer(self, text):
|
| 325 |
+
result = self.tokenize(
|
| 326 |
+
text,
|
| 327 |
+
padding="max_length",
|
| 328 |
+
truncation=True,
|
| 329 |
+
max_length=512,
|
| 330 |
+
return_tensors="pt",
|
| 331 |
+
)
|
| 332 |
+
return result
|
| 333 |
+
|
| 334 |
+
def encode(self, text):
|
| 335 |
+
with torch.no_grad():
|
| 336 |
+
# the 'fusion' truncate mode can be changed to 'rand_trunc' if run in unfusion mode
|
| 337 |
+
text_data = self.tokenizer(text)# input_ids shape:(b,512)
|
| 338 |
+
embed = self.model.get_text_embedding(text_data)
|
| 339 |
+
embed = embed.unsqueeze(1)# (b,1,512)
|
| 340 |
+
return embed
|
| 341 |
+
|
| 342 |
+
class FrozenCLAPOrderEmbedder2(AbstractEncoder):# 每个object后面都加上|
|
| 343 |
+
"""Uses the CLAP transformer encoder for text (from huggingface)"""
|
| 344 |
+
def __init__(self, weights_path, freeze=True, device="cuda"):
|
| 345 |
+
super().__init__()
|
| 346 |
+
|
| 347 |
+
model_state_dict = torch.load(weights_path, map_location=torch.device('cpu'))['model']
|
| 348 |
+
match_params = dict()
|
| 349 |
+
for key in list(model_state_dict.keys()):
|
| 350 |
+
if 'caption_encoder' in key:
|
| 351 |
+
match_params[key.replace('caption_encoder.', '')] = model_state_dict[key]
|
| 352 |
+
|
| 353 |
+
config_as_str = files('ldm').joinpath('modules/encoders/CLAP/config.yml').read_text()
|
| 354 |
+
args = read_config_as_args(config_as_str, is_config_str=True)
|
| 355 |
+
|
| 356 |
+
# To device
|
| 357 |
+
self.tokenizer = AutoTokenizer.from_pretrained(args.text_model) # args.text_model
|
| 358 |
+
self.caption_encoder = TextEncoder(
|
| 359 |
+
args.d_proj, args.text_model, args.transformer_embed_dim
|
| 360 |
+
).to(device)
|
| 361 |
+
self.max_objs = 10
|
| 362 |
+
self.max_length = args.text_len
|
| 363 |
+
self.device = device
|
| 364 |
+
self.order_to_label = self.build_order_dict()
|
| 365 |
+
if freeze: self.freeze()
|
| 366 |
+
|
| 367 |
+
print(f"{self.caption_encoder.__class__.__name__} comes with {count_params(self.caption_encoder) * 1.e-6:.2f} M params.")
|
| 368 |
+
|
| 369 |
+
def freeze(self):
|
| 370 |
+
self.caption_encoder.base = self.caption_encoder.base.eval()
|
| 371 |
+
for param in self.caption_encoder.base.parameters():
|
| 372 |
+
param.requires_grad = False
|
| 373 |
+
|
| 374 |
+
def build_order_dict(self):
|
| 375 |
+
order2label = {}
|
| 376 |
+
num_orders = 10
|
| 377 |
+
time_stamps = ['start','mid','end']
|
| 378 |
+
time_num = len(time_stamps)
|
| 379 |
+
for i in range(num_orders):
|
| 380 |
+
for j,time_stamp in enumerate(time_stamps):
|
| 381 |
+
order2label[f'order {i} {time_stamp}'] = i * time_num + j
|
| 382 |
+
order2label['all'] = num_orders*len(time_stamps)
|
| 383 |
+
order2label['unknown'] = num_orders*len(time_stamps) + 1
|
| 384 |
+
return order2label
|
| 385 |
+
|
| 386 |
+
def encode(self, text):
|
| 387 |
+
obj_list,orders_list = [],[]
|
| 388 |
+
for raw in text:
|
| 389 |
+
splits = raw.split('@') # raw example: '<man speaking& order 1 start>@<man speaking& order 2 mid>@<idle engine& all>'
|
| 390 |
+
objs = []
|
| 391 |
+
orders = []
|
| 392 |
+
for split in splits:# <obj& order>
|
| 393 |
+
split = split[1:-1]
|
| 394 |
+
obj,order = split.split('&')
|
| 395 |
+
objs.append(obj.strip())
|
| 396 |
+
try:
|
| 397 |
+
orders.append(self.order_to_label[order.strip()])
|
| 398 |
+
except:
|
| 399 |
+
print(order.strip(),raw)
|
| 400 |
+
assert len(objs) == len(orders)
|
| 401 |
+
obj_list.append(' | '.join(objs)+' |')# '|' after every word
|
| 402 |
+
orders_list.append(orders)
|
| 403 |
+
batch_encoding = self.tokenizer(obj_list, truncation=True, max_length=self.max_length, return_length=True,
|
| 404 |
+
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
|
| 405 |
+
tokens = batch_encoding["input_ids"]
|
| 406 |
+
|
| 407 |
+
outputs = self.caption_encoder.base(input_ids=tokens.to(self.device))
|
| 408 |
+
z = self.caption_encoder.projection(outputs.last_hidden_state)
|
| 409 |
+
return {'token_embedding':z,'token_ids':tokens,'orders':orders_list}
|
| 410 |
+
|
| 411 |
+
class FrozenCLAPOrderEmbedder3(AbstractEncoder):# 相比于FrozenCLAPOrderEmbedder2移除了projection,使用正确的max_len,去除了order仅保留时间。
|
| 412 |
+
"""Uses the CLAP transformer encoder for text (from huggingface)"""
|
| 413 |
+
def __init__(self, weights_path, freeze=True, device="cuda"): # clip-vit-base-patch32
|
| 414 |
+
super().__init__()
|
| 415 |
+
|
| 416 |
+
model_state_dict = torch.load(weights_path, map_location=torch.device('cpu'))['model']
|
| 417 |
+
match_params = dict()
|
| 418 |
+
for key in list(model_state_dict.keys()):
|
| 419 |
+
if 'caption_encoder' in key:
|
| 420 |
+
match_params[key.replace('caption_encoder.', '')] = model_state_dict[key]
|
| 421 |
+
|
| 422 |
+
config_as_str = files('ldm').joinpath('modules/encoders/CLAP/config.yml').read_text()
|
| 423 |
+
args = read_config_as_args(config_as_str, is_config_str=True)
|
| 424 |
+
|
| 425 |
+
# To device
|
| 426 |
+
self.tokenizer = AutoTokenizer.from_pretrained(args.text_model) # args.text_model
|
| 427 |
+
self.caption_encoder = TextEncoder(
|
| 428 |
+
args.d_proj, args.text_model, args.transformer_embed_dim
|
| 429 |
+
).to(device)
|
| 430 |
+
self.max_objs = 10
|
| 431 |
+
self.max_length = args.text_len
|
| 432 |
+
self.device = device
|
| 433 |
+
self.order_to_label = self.build_order_dict()
|
| 434 |
+
if freeze: self.freeze()
|
| 435 |
+
|
| 436 |
+
print(f"{self.caption_encoder.__class__.__name__} comes with {count_params(self.caption_encoder) * 1.e-6:.2f} M params.")
|
| 437 |
+
|
| 438 |
+
def freeze(self):
|
| 439 |
+
self.caption_encoder.base = self.caption_encoder.base.eval()
|
| 440 |
+
for param in self.caption_encoder.base.parameters():
|
| 441 |
+
param.requires_grad = False
|
| 442 |
+
|
| 443 |
+
def build_order_dict(self):
|
| 444 |
+
order2label = {}
|
| 445 |
+
time_stamps = ['all','start','mid','end']
|
| 446 |
+
for i,time_stamp in enumerate(time_stamps):
|
| 447 |
+
order2label[time_stamp] = i
|
| 448 |
+
return order2label
|
| 449 |
+
|
| 450 |
+
def encode(self, text):
|
| 451 |
+
obj_list,orders_list = [],[]
|
| 452 |
+
for raw in text:
|
| 453 |
+
splits = raw.split('@') # raw example: '<man speaking& order 1 start>@<man speaking& order 2 mid>@<idle engine& all>'
|
| 454 |
+
objs = []
|
| 455 |
+
orders = []
|
| 456 |
+
for split in splits:# <obj& order>
|
| 457 |
+
split = split[1:-1]
|
| 458 |
+
obj,order = split.split('&')
|
| 459 |
+
objs.append(obj.strip())
|
| 460 |
+
try:
|
| 461 |
+
orders.append(self.order_to_label[order.strip()])
|
| 462 |
+
except:
|
| 463 |
+
print(order.strip(),raw)
|
| 464 |
+
assert len(objs) == len(orders)
|
| 465 |
+
obj_list.append(' | '.join(objs)+' |')# '|' after every word
|
| 466 |
+
orders_list.append(orders)
|
| 467 |
+
batch_encoding = self.tokenizer(obj_list, truncation=True, max_length=self.max_length, return_length=True,
|
| 468 |
+
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
|
| 469 |
+
tokens = batch_encoding["input_ids"]
|
| 470 |
+
attn_mask = batch_encoding["attention_mask"]
|
| 471 |
+
outputs = self.caption_encoder.base(input_ids=tokens.to(self.device))
|
| 472 |
+
z = outputs.last_hidden_state
|
| 473 |
+
return {'token_embedding':z,'token_ids':tokens,'orders':orders_list,'attn_mask':attn_mask}
|
| 474 |
+
|
| 475 |
+
class FrozenCLAPT5Embedder(AbstractEncoder):
|
| 476 |
+
"""Uses the CLAP transformer encoder for text from microsoft"""
|
| 477 |
+
def __init__(self, weights_path,t5version="google/flan-t5-large", freeze=True, device="cuda", max_length=77): # clip-vit-base-patch32
|
| 478 |
+
super().__init__()
|
| 479 |
+
|
| 480 |
+
model_state_dict = torch.load(weights_path, map_location=torch.device('cpu'))['model']
|
| 481 |
+
match_params = dict()
|
| 482 |
+
for key in list(model_state_dict.keys()):
|
| 483 |
+
if 'caption_encoder' in key:
|
| 484 |
+
match_params[key.replace('caption_encoder.', '')] = model_state_dict[key]
|
| 485 |
+
|
| 486 |
+
config_as_str = files('ldm').joinpath('modules/encoders/CLAP/config.yml').read_text()
|
| 487 |
+
args = read_config_as_args(config_as_str, is_config_str=True)
|
| 488 |
+
|
| 489 |
+
self.clap_tokenizer = AutoTokenizer.from_pretrained(args.text_model) # args.text_model
|
| 490 |
+
self.caption_encoder = TextEncoder(
|
| 491 |
+
args.d_proj, args.text_model, args.transformer_embed_dim
|
| 492 |
+
)
|
| 493 |
+
|
| 494 |
+
self.t5_tokenizer = T5Tokenizer.from_pretrained(t5version)
|
| 495 |
+
self.t5_transformer = T5EncoderModel.from_pretrained(t5version)
|
| 496 |
+
|
| 497 |
+
self.max_length = max_length
|
| 498 |
+
self.to(device=device)
|
| 499 |
+
if freeze: self.freeze()
|
| 500 |
+
|
| 501 |
+
print(f"{self.caption_encoder.__class__.__name__} comes with {count_params(self.caption_encoder) * 1.e-6:.2f} M params.")
|
| 502 |
+
|
| 503 |
+
def freeze(self):
|
| 504 |
+
self.caption_encoder = self.caption_encoder.eval()
|
| 505 |
+
for param in self.caption_encoder.parameters():
|
| 506 |
+
param.requires_grad = False
|
| 507 |
+
|
| 508 |
+
def to(self,device):
|
| 509 |
+
self.t5_transformer.to(device)
|
| 510 |
+
self.caption_encoder.to(device)
|
| 511 |
+
self.device = device
|
| 512 |
+
|
| 513 |
+
def encode(self, text):
|
| 514 |
+
ori_caption = text['ori_caption']
|
| 515 |
+
struct_caption = text['struct_caption']
|
| 516 |
+
# print(ori_caption,struct_caption)
|
| 517 |
+
clap_batch_encoding = self.clap_tokenizer(ori_caption, truncation=True, max_length=self.max_length, return_length=True,
|
| 518 |
+
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
|
| 519 |
+
ori_tokens = clap_batch_encoding["input_ids"].to(self.device)
|
| 520 |
+
t5_batch_encoding = self.t5_tokenizer(struct_caption, truncation=True, max_length=self.max_length, return_length=True,
|
| 521 |
+
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
|
| 522 |
+
struct_tokens = t5_batch_encoding["input_ids"].to(self.device)
|
| 523 |
+
outputs = self.caption_encoder.base(input_ids=ori_tokens)
|
| 524 |
+
z = self.caption_encoder.projection(outputs.last_hidden_state)
|
| 525 |
+
z2 = self.t5_transformer(input_ids=struct_tokens).last_hidden_state
|
| 526 |
+
return torch.concat([z,z2],dim=1)
|
| 527 |
+
|
| 528 |
+
|
| 529 |
+
class FrozenCLAPFLANEmbedder(AbstractEncoder):
|
| 530 |
+
"""Uses the CLAP transformer encoder for text from microsoft"""
|
| 531 |
+
def __init__(self, weights_path,t5version="ldm/modules/encoders/CLAP/t5-v1_1-large", freeze=True, device="cuda", max_length=77): # clip-vit-base-patch32
|
| 532 |
+
super().__init__()
|
| 533 |
+
|
| 534 |
+
model_state_dict = torch.load(weights_path, map_location=torch.device('cpu'))['model']
|
| 535 |
+
match_params = dict()
|
| 536 |
+
for key in list(model_state_dict.keys()):
|
| 537 |
+
if 'caption_encoder' in key:
|
| 538 |
+
match_params[key.replace('caption_encoder.', '')] = model_state_dict[key]
|
| 539 |
+
|
| 540 |
+
config_as_str = files('ldm').joinpath('modules/encoders/CLAP/config.yaml').read_text()
|
| 541 |
+
args = read_config_as_args(config_as_str, is_config_str=True)
|
| 542 |
+
|
| 543 |
+
self.clap_tokenizer = AutoTokenizer.from_pretrained(args.text_model) # args.text_model
|
| 544 |
+
self.caption_encoder = TextEncoder(
|
| 545 |
+
args.d_proj, args.text_model, args.transformer_embed_dim
|
| 546 |
+
)
|
| 547 |
+
|
| 548 |
+
self.t5_tokenizer = T5Tokenizer.from_pretrained(t5version)
|
| 549 |
+
self.t5_transformer = T5EncoderModel.from_pretrained(t5version)
|
| 550 |
+
|
| 551 |
+
self.max_length = max_length
|
| 552 |
+
# self.to(device=device)
|
| 553 |
+
if freeze: self.freeze()
|
| 554 |
+
|
| 555 |
+
print(f"{self.caption_encoder.__class__.__name__} comes with {count_params(self.caption_encoder) * 1.e-6:.2f} M params.")
|
| 556 |
+
|
| 557 |
+
def freeze(self):
|
| 558 |
+
self.caption_encoder = self.caption_encoder.eval()
|
| 559 |
+
for param in self.caption_encoder.parameters():
|
| 560 |
+
param.requires_grad = False
|
| 561 |
+
|
| 562 |
+
def to(self,device):
|
| 563 |
+
self.t5_transformer.to(device)
|
| 564 |
+
self.caption_encoder.to(device)
|
| 565 |
+
self.device = device
|
| 566 |
+
|
| 567 |
+
def encode(self, text):
|
| 568 |
+
ori_caption = text['ori_caption']
|
| 569 |
+
struct_caption = text['struct_caption']
|
| 570 |
+
# print(ori_caption,struct_caption)
|
| 571 |
+
clap_batch_encoding = self.clap_tokenizer(ori_caption, truncation=True, max_length=self.max_length, return_length=True,
|
| 572 |
+
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
|
| 573 |
+
ori_tokens = clap_batch_encoding["input_ids"].to(self.device)
|
| 574 |
+
t5_batch_encoding = self.t5_tokenizer(struct_caption, truncation=True, max_length=self.max_length, return_length=True,
|
| 575 |
+
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
|
| 576 |
+
struct_tokens = t5_batch_encoding["input_ids"].to(self.device)
|
| 577 |
+
# if self.caption_encoder.device != ori_tokens.device:
|
| 578 |
+
# self.to(self.device)
|
| 579 |
+
outputs = self.caption_encoder.base(input_ids=ori_tokens)
|
| 580 |
+
z = self.caption_encoder.projection(outputs.last_hidden_state)
|
| 581 |
+
z2 = self.t5_transformer(input_ids=struct_tokens).last_hidden_state
|
| 582 |
+
return torch.concat([z,z2],dim=1)
|